Topic
Algebraic number
About: Algebraic number is a research topic. Over the lifetime, 20611 publications have been published within this topic receiving 315606 citations.
Papers published on a yearly basis
Papers
More filters
Book•
01 Jan 1960
TL;DR: In this paper, the authors present conditions générales d'utilisation (http://www.numdam.org/conditions), i.e., Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Abstract: © Publications mathématiques de l’I.H.É.S., 1965, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
4,578 citations
2,408 citations
Book•
25 Jun 1993
TL;DR: This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded and contains numerous exercises that help the reader to understand the basic material.
Abstract: The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings and others. The main objective of this book is to provide a purely algebraic, self-contained and in-depth exposition of the theory of function fields. This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded. Moreover, the present edition contains numerous exercises. Some of them are fairly easy and help the reader to understand the basic material. Other exercises are more advanced and cover additional material which could not be included in the text. This volume is mainly addressed to graduate students in mathematics and theoretical computer science, cryptography, coding theory and electrical engineering.
2,041 citations
TL;DR: In this paper, it was proved that the counterterm for an arbitrary 4-loop Feynman diagram in an arbitrary model is calculable within the minimal subtraction scheme in terms of rational numbers and the Riemann ζ-function in a finite number of steps via a systematic "algebraic" procedure involving neither integration of elementary, special, or any other functions, nor expansions in and summation of infinite series of any kind.
Abstract: The following statement is proved: the counterterm for an arbitrary 4-loop Feynman diagram in an arbitrary model is calculable within the minimal subtraction scheme in terms of rational numbers and the Riemann ζ-function in a finite number of steps via a systematic “algebraic” procedure involving neither integration of elementary, special, or any other functions, nor expansions in and summation of infinite series of any kind. The number of steps is a rapidly increasing function of the complexity of the diagram. To demonstrate further possibilities offered by the technique we compute the 5-loop diagram contributing to the anomalous field dimension γ 2 ( g ) in the ϕ 4 model, that defied, heretofore, analytical calculation by other methods.
1,928 citations
Book•
01 Jan 1973
TL;DR: In this article, the theorem on arithmetic progressions modular forms is proved for finite fields p-adic fields Hilbert symbol quadratic forms over Qp, and over Q integral quadratics forms with discriminant +-1.
Abstract: Part 1 Algebraic methods: finite fields p-adic fields Hilbert symbol quadratic forms over Qp, and over Q integral quadratic forms with discriminant +-1. Part 2 Analytic methods: the theorem on arithmetic progressions modular forms.
1,858 citations