scispace - formally typeset
Search or ask a question
Topic

Alkaline phosphatase

About: Alkaline phosphatase is a research topic. Over the lifetime, 20218 publications have been published within this topic receiving 540547 citations. The topic is also known as: Alkaline_phosphatase & IPR001952.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings indicate that tetranectin and latent alkaline phosphatase define an easily mobilizable population of cytoplasmic storage organelles in human neutrophils which are functionally distinguishable from azurophil, specific, and gelatinase-containing granules.
Abstract: Tetranectin, a protein recently identified in a wide variety of human secretory cells (Christensen, L., and I. Clemmensen. 1989. Histochemistry. 92:29-35) was found to colocalize with latent alkaline phosphatase activity in fractions well separated from azurophil granules, specific granules, gelatinase-containing granules, and plasma membranes when postnuclear supernatants of nitrogen-cavitated neutrophils were fractionated on discontinuous Percoll density gradients. Stimulation of intact neutrophils with nanomolar concentrations of FMLP, leukotriene B4, 10-100 U/ml of tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor resulted in parallel release of tetranectin and translocation of alkaline phosphatase to the plasma membrane. Furthermore, intracellular pools of tetranectin and latent alkaline phosphatase were completely released from neutrophils under conditions that barely induced release of specific granules containing B12-binding protein. These findings indicate that tetranectin and latent alkaline phosphatase define an easily mobilizable population of cytoplasmic storage organelles in human neutrophils which are functionally distinguishable from azurophil, specific, and gelatinase-containing granules. These organelles may play an important role as stores of membrane proteins that are mobilized to the cell surface during stimulation by inflammatory mediators.

157 citations

Journal ArticleDOI
TL;DR: A synthetic gene for human epidermal growth factor was joined to a sequence encoding the signal peptide of Escherichia coli alkaline phosphatase, and mature hEGF was recovered in the periplasmic fraction.
Abstract: A synthetic gene for human epidermal growth factor (hEGF) was joined to a sequence encoding the signal peptide of Escherichia coli alkaline phosphatase. This hybrid gene was placed under the control of the alkaline phosphatase gene (phoA) promoter in a recombinant plasmid, which was used to transfect E. coli. The hybrid protein that was expressed in host cells under conditions of phosphate limitation was processed accurately during the secretion process, and mature hEGF was recovered in the periplasmic fraction. On the other hand, no EGF was detected in the periplasmic space when the synthetic hEGF gene was not accompanied by the phoA signal sequence.

157 citations

Journal ArticleDOI
TL;DR: The data suggest that 1,25-Dihydroxyvitamin D3 and 24,25-(OH)2D3 can directly affect chondrocyte membrane enzymes without genomic influence or protein synthesis and that membrane response depends on the stage of chond rocyte differentiation.
Abstract: 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] and 24,25-(OH)2D3 differentially affect the specific activity of alkaline phosphatase (ALPase) and phospholipase-A2 (PLA2) of plasma membranes and extracellular matrix vesicles produced by costochondral reserve zone and growth zone cartilage chondrocytes in culture. In the present study, growth zone and cartilage and reserve zone matrix vesicles and plasma membranes were isolated from confluent chondrocyte cultures and incubated with hormone for 3 and 24 h in vitro. Addition of 1,25-(OH)2D3 to GC matrix vesicles and plasma membranes resulted in dose-dependent increases in ALPase and PLA2 specific activities in both membrane fractions. Addition of 24,25-(OH)2D3 to RC membrane fractions stimulated matrix vesicle ALPase at 10(-7) and 10(-8) M and plasma membrane ALPase at 10(-8) M only. However, 24,25-(OH)2D3 inhibited matrix vesicle and plasma membrane PLA2 activity. The effects of the vitamin D metabolites were noticed after both 3 and 24 h. Neither hormone metabolite had any effect on these enzymes in membrane fractions from cultures of neonatal rat muscle mesenchymal cells, which do not calcify their matrix in vivo. These data suggest that 1,25-(OH)2D3 and 24,25-(OH)2D3 can directly affect chondrocyte membrane enzymes without genomic influence or protein synthesis and that membrane response depends on the stage of chondrocyte differentiation. Changes in PLA2 activity may change membrane fluidity and may be a mechanism by which the hormones affect cell membranes.

157 citations

Journal ArticleDOI
TL;DR: Findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined.
Abstract: The enzyme Na+,5+-ATPase was cytochemically localized in the rat hepatocyte by a modification of the Ernst potassium-dependent nitrophenyl phosphatase technique. Measurement of nitrophenol release from 50-micrometer liver slices confirmed the presence of ouabain-inhibitable nitrophenyl phosphatase activity that increased over the 30-min incubation period. Electron micrographs demonstrated that sinusoidal and lateral membrane reaction product deposition was K+-dependent, Mg++-dependent, inhibited by ouabain but not by alkaline phosphatase inhibitors, and was localized to the cytoplasmic side of the membrane. In contrast, canalicular reaction product was K+-independent, Mg++-dependent, inhibited by alkaline phosphatase inhibitors but not by ouabain, and was localized to the luminal side of the membrane. These findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined. This basolateral localization of Na+,K+-ATPase is similar to that found in epithelia where secretion is also directed across the apical membrane.

156 citations

Journal ArticleDOI
TL;DR: It is proposed that BMP regulation of the bone/liver/kidney alkaline phosphatase gene is indirect, requiring expression of new transcription factor(s) that behave differently in rodent and human MSC.
Abstract: Bone morphogenetic proteins (BMPs) promote the differentiation of osteoprogenitor cells, and also induce osteogenesis in bone marrow stromal cells (MSC) from rats and mice. However, compared to results with animal models, BMPs are relatively inefficient in inducing human MSC to undergo osteogenesis, and are much less effective in promoting bone formation in human clinical trials. Previous studies indicated that, while human MSC respond to dexamethasone with elevated levels of the osteoblast marker alkaline phosphatase, most isolates of human MSC fail to show alkaline phosphatase induction in response to BMP-2, BMP-4, or BMP-7. Several other genes known to be induced by BMPs are appropriately regulated; thus, human MSC are capable of some BMP-activated signaling. Analysis of the BMP receptors ALK-3 and ALK-6 indicated that, although ALK-6 mRNA was not expressed in human MSC, overexpressing a constitutively active ALK-6 receptor did not induce elevated alkaline phosphatase. Real-time RT-PCR was used to investigate expression of several osteoblast-related transcription factors in MSC after 6 days' exposure to BMP2 or dexamethasone. Msx-2, a transcription factor that has been reported to inhibit differentiation of osteoprogenitor cells, showed 10-fold elevation in BMP-2-treated human MSC, but not in BMP-2-treated rat MSC. Overexpression of Msx-2 in human and rat MSC, however, did not alter alkaline phosphatase levels, which suggests that absence of BMP-stimulated alkaline phosphatase was not caused by the BMP-2-induced increase in Msx-2. Although Runx2 isoforms have been implicated in control of osteoblast differentiation, levels of this transcription factor were unaffected by BMP treatment. Expression of the FKHR transcription factor, which has been reported to regulate alkaline phosphatase transcription in mouse cells, showed a modest increase in response to BMP-2, but a much greater increase in dexamethasone-treated cells. We propose that BMP regulation of the bone/liver/kidney alkaline phosphatase gene is indirect, requiring expression of new transcription factor(s) that behave differently in rodent and human MSC.

156 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Oxidative stress
86.5K papers, 3.8M citations
80% related
Gene expression
113.3K papers, 5.5M citations
80% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023795
20221,761
2021271
2020302
2019294