scispace - formally typeset
Search or ask a question
Topic

Alkaline phosphatase

About: Alkaline phosphatase is a research topic. Over the lifetime, 20218 publications have been published within this topic receiving 540547 citations. The topic is also known as: Alkaline_phosphatase & IPR001952.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that modeled MG inhibits the osteoblastic differentiation of hMSC and induces the development of an adipocytic lineage phenotype, which will increase understanding and aid in the prevention of bone loss, not only in MG but also potentially in age-and disuse-related osteoporosis.
Abstract: Space flight-induced bone loss has been attributed to a decrease in osteoblast function, without a significant change in bone resorption. To determine the effect of microgravity (MG) on bone, we used the Rotary Cell Culture System [developed by the National Aeronautics and Space Administration (NASA)] to model MG. Cultured mouse calvariae demonstrated a 3-fold decrease in alkaline phosphatase (ALP) activity and failed to mineralize after 7 d of MG. ALP and osteocalcin gene expression were also decreased. To determine the effects of MG on osteoblastogenesis, we cultured human mesenchymal stem cells (hMSC) on plastic microcarriers, and osteogenic differentiation was induced immediately before the initiation of modeled MG. A marked suppression of hMSC differentiation into osteoblasts was observed because the cells failed to express ALP, collagen 1, and osteonectin. The expression of runt-related transcription factor 2 was also inhibited. Interestingly, we found that peroxisome proliferator-activated receptor gamma (PPARgamma2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4 are highly expressed in response to MG. These changes were not corrected after 35 d of readaptation to normal gravity. In addition, MG decreased ERK- and increased p38-phosphorylation. These pathways are known to regulate the activity of runt-related transcription factor 2 and PPARgamma2, respectively. Taken together, our findings indicate that modeled MG inhibits the osteoblastic differentiation of hMSC and induces the development of an adipocytic lineage phenotype. This work will increase understanding and aid in the prevention of bone loss, not only in MG but also potentially in age-and disuse-related osteoporosis.

270 citations

Journal ArticleDOI
TL;DR: Findings imply that the collagen-alpha2beta1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.
Abstract: Bone marrow contains multipotent cells that differentiate into fibroblasts, adipocytes, and osteoblasts. Recently we found that type I collagen matrix induced the osteoblastic differentiation of bone marrow cells. Three weeks after cells were cultured with type I collagen, they formed mineralized tissues. In this study, we investigated the expression of osteoblast-related genes (alkaline phosphatase, osteocalcin, bone sialoprotein, osteopontin, and cbfa-1) during the osteoblastic differentiation. The expression of alkaline phosphatase and osteopontin genes increased time-dependently during the osteoblastic differentiation. Osteocalcin and bone sialoprotein genes were expressed in cells that formed mineralized tissues, and both were expressed only after cells reached the mineralized tissue-formation stage. On the other hand, the cbfa-1 gene was expressed from the early differentiation stage. The Asp-Gly-Glu-Ala (DGEA) amino acid domain of type I collagen interacts with the alpha2beta1 integrin receptor on the cell membrane and mediates extracellular signals into cells. When the collagen-integrin interaction was interrupted by the addition of DGEA peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. These findings imply that the collagen-alpha2beta1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.

269 citations

Journal ArticleDOI
TL;DR: AMPPD and AMPGD offer alternatives to colorimetric and fluorescent substrates for alkaline phosphatase and beta-D-galactosidase labels used in enzyme immunoassays, and the simplicity and sensitivity of this chemiluminescent readout allowed the development of rapid clinical assays.
Abstract: We have synthesized and studied two 1,2-dioxetane-based chemiluminescent enzyme substrates: 3-(2'-spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)phenyl- 1,2-dioxetane (AMPPD), and, 3-(2'-spiroadamantane)-4-methoxy-4-(3"-beta-D'-galactopyrano -yloxy)phenyl-1,2- dioxetane (AMPGD), which can be activated to chemiluminescence at 470 nm by alkaline phosphatase and beta-D-galactosidase, respectively. In addition, we observed that certain macromolecules enhance the luminescence of AMPPD. For example, the addition of 0.1% bovine serum albumin amplifies the luminescent signal and improves the detection limit for alkaline phosphatase by approximately one order of magnitude under certain conditions. This effect is due to the presence of a hydrophobic microenvironment provided by the enhancer which 'stabilizes' the dephosphorylated AMPPD emitter. Alkaline phosphatase catalysed chemiluminescence from AMPPD is constant for a prolonged period of time. Using AMPPD we were able to detect 0.01 attomole quantities of alkaline phosphatase immobilized on membrane supports and imaged on photographic film and, in solution, measured in a luminometer. AMPPD and AMPGD offer alternatives to colorimetric and fluorescent substrates for alkaline phosphatase and beta-D-galactosidase labels used in enzyme immunoassays. The simplicity and sensitivity of this chemiluminescent readout allowed the development of rapid clinical assays (e.g. beta-hCG, LH, TSH and others).

269 citations

Journal ArticleDOI
TL;DR: Two mutations lie within the phoA portion of the fused gene and cause internalization of the hybrid protein and lead to amino acid alterations in the signal sequence of alkaline phosphatase.
Abstract: A phoA-lacZ gene fusion was used to isolate mutants altered in the alkaline phosphatase signal sequence. This was done by selecting Lac+ mutants from a phoA-lacZ fusion strain that produces a membrane-bound hybrid protein and is unable to grow on lactose. Two such mutant derivatives were characterized. The mutations lie within the phoA portion of the fused gene and cause internalization of the hybrid protein. When the mutations were genetically recombined into an otherwise wild-type phoA gene, they interfered with export of alkaline phosphatase to the periplasm. The mutant alkaline phosphatase protein was found instead in the cytoplasm in precursor form. DNA sequence analysis demonstrated that both mutations lead to amino acid alterations in the signal sequence of alkaline phosphatase. Images

268 citations

Journal ArticleDOI
TL;DR: The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.
Abstract: Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 1, 3, 15, 25 uM) along with a normal osteogenic medium (OSM) as control for 1, 5, 10 days. As measured by MTT assay for mitochondrial metabolic activity, cell proliferation was stimulated even at low zinc treatment (1-3 µM) compared to OSM, and it was stimulated in a zinc concentration-dependent manner during 5 and 10 days, with the most pronounced effect at 15 and 25 uM Zn. Cellular (synthesized) alkaline phosphatase (ALP) activity was increased in a zinc concentration-dependent manner, so did medium (secreted) ALP activity. Cellular collagen concentration was increased by zinc as time went by, therefore with the maximum zinc stimulatory effect in 10 days, and medium collagen concentration showed the same pattern even on 1 and 5 day. This zinc stimulatory effect of collagen synthesis was observed in cell matrix collagen staining. The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.

268 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Oxidative stress
86.5K papers, 3.8M citations
80% related
Gene expression
113.3K papers, 5.5M citations
80% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023795
20221,761
2021271
2020302
2019294