scispace - formally typeset
Search or ask a question
Topic

Alkaline phosphatase

About: Alkaline phosphatase is a research topic. Over the lifetime, 20218 publications have been published within this topic receiving 540547 citations. The topic is also known as: Alkaline_phosphatase & IPR001952.


Papers
More filters
Journal ArticleDOI
TL;DR: A technique for the histochemical demonstration of non-specific alkaline phosphatase was developed using a medium containing indoxyl phosphate and a tetrazolium salt, Nitro B.T.
Abstract: A technique for the histochemical demonstration of non-specific alkaline phosphatase was developed using a medium containing indoxyl phosphate and a tetrazolium salt, Nitro B.T. The tetrazolium salt was reduced to diformazan by the hydrogen ions released by the formation of either indigo or indigo white by reaction of the enzyme on the indoxyl phosphate. The localization in the organs investigated was similar to that obtained by the standard azo dye and lead techniques.

260 citations

Journal ArticleDOI
TL;DR: A mouse radial segmental defect is developed as a model experimental system for testing the capacity of Genetically Engineered Pluripotent Mesenchymal Cells (GEPMC, C3H10T1/2 clone expressing rhBMP‐2), for gene delivery, engraftment, and induction of bone growth in regenerating bone.
Abstract: Background Among the approximately 6.5 million fractures suffered in the United States every year, about 15% are difficult to heal. As yet, for most of these difficult cases there is no effective therapy. We have developed a mouse radial segmental defect as a model experimental system for testing the capacity of Genetically Engineered Pluripotent Mesenchymal Cells (GEPMC, C3H10T1/2 clone expressing rhBMP-2), for gene delivery, engraftment, and induction of bone growth in regenerating bone. Methods Transfected GEPMC expressing rhBMP-2 were further infected with a vector carrying the lacZ gene, that encodes for β-galactosidase (β-gal). In vitro levels of rhBMP-2 expression and function were confirmed by immunohistochemistry, and bioassay. Differentiation was assayed using alkaline phosphatase staining. GEPMC were transplanted in vivo into a radial segmental defect. The main control groups included lacZ clones of WT-C3H10T1/2-LacZ, and CHO-rhBMP-2 cells. New bone formation was measured quantitatively via fluorescent labeling, X-ray analysis and histomorphometry. Engrafted mesenchymal cells were localized in vivo by β-gal expression, and double immunofluorescence. Results In vitro, GEPMC expressed rhBMP-2, β-gal and spontaneously differentiated into osteogenic cells expressing alkaline phosphatase. Detection of transplanted cells revealed engrafted cells that had differentiated into osteoblasts and co-expressed β-gal and rhBMP-2. Analysis of new bone formation revealed that at fout to eight week post-transplantation, GEPMS significantly enhanced segmental defect repair. Conclusions Our study shows that cell-mediated gene transfer can be utilized for growth factor delivery to signaling receptors of transplanted cells (autocrine effect) and host mesenchymal cells (paracrine effect) suggesting the ability of GEPMC to engraft, differentiate, and stimulate bone growth. We suggest that our approach should lead to the designing of mesenchymal stem cell based gene therapy strategies for bone lesions as well as other tissues. Copyright © 1999 John Wiley & Sons, Ltd.

260 citations

Journal ArticleDOI
TL;DR: Fractionation results provide strong additional support for the current view that the activable O-2--forming system is localized in the plasma membrane of human neutrophils.
Abstract: The subcellular distribution of the superoxide (O2-)-forming enzyme in human neutrophils was investigated. Cells were activated by phorbolmyristate acetate or by opsonized zymosan, and were then fractionated by zonal-rate sedimentation at two different speeds. At high speed, the specific granules were resolved from the azurophils and the membrane fraction, while at low speed, the azurophil granules could be separated from fast-sedimenting particle aggregates. Under both conditions, the major portion of the O-2--forming activity (60--70% of the total) was found to be associated with the membrane fraction which was characterized by the presence of alkaline phosphatase, alkaline phosphodiesterase I, and acid aryl phosphatase. No significant O-2--forming activity was found in either specific or azurophil granules. Some activity was present in the fastest sedimenting fractions which, as shown by electron microscopy, were heterogeneous and contained aggregated material which included membrane fragments. These fractionation results provide strong additional support for the current view that the activable O-2--forming system is localized in the plasma membrane of human neutrophils.

260 citations

Journal ArticleDOI
TL;DR: The present study showed that ascorbic acid can be effective in the protection of aluminium-induced toxicity, and significantly decreased the levels of free radicals, TL, cholesterol, glucose and creatinine, and increased the activity of GST, SH groups, Hb, TEC and PCV.

260 citations

Journal ArticleDOI
TL;DR: The results suggest that cartilage-matrix calcification can be controlled by growth factor(s) and that chondrocytes induce the mineralization of extracellular matrix when terminal differentiation is permitted in the absence of an artificial substrate.
Abstract: Rabbit chondrocyte cultures on plastic dishes are capable of depositing a cartilaginous matrix, although the matrix does not calcify unless high levels of phosphate are added to the medium. In the present study, we cultivated a pelleted mass of rabbit growth-plate chondrocytes in the presence of Eagle's minimum essential medium supplemented with 10% fetal bovine serum and 50 micrograms of ascorbic acid per ml in a plastic centrifuge tube. These cells proliferated for several generations and then reorganized into a cartilage-like tissue that calcified without additional phosphate. The deposition of minerals was observed only after synthesis of a short-chain collagen and alkaline phosphatase. Serum factors were required for the increases in alkaline phosphatase and calcium contents. 5-Bromo-2'-deoxyuridine abolished the increases in uronic acid, alkaline phosphatase, and calcium contents. Transforming growth factor beta, at very low concentrations, suppressed the expression of the mineralization-related phenotype by chondrocytes. These results suggest that cartilage-matrix calcification can be controlled by growth factor(s) and that chondrocytes induce the mineralization of extracellular matrix when terminal differentiation is permitted in the absence of an artificial substrate.

259 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Oxidative stress
86.5K papers, 3.8M citations
80% related
Gene expression
113.3K papers, 5.5M citations
80% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023795
20221,761
2021271
2020302
2019294