scispace - formally typeset
Search or ask a question
Topic

Alkaline phosphatase

About: Alkaline phosphatase is a research topic. Over the lifetime, 20218 publications have been published within this topic receiving 540547 citations. The topic is also known as: Alkaline_phosphatase & IPR001952.


Papers
More filters
Journal ArticleDOI
TL;DR: The expression of STRO‐1 in vitro remains a characteristic of less well differentiated cells of the osteoblast lineage; in cultures of BMSCs and in established human osteosarcoma cell lines, there is an inverse association between the expression of TRO‐1 and ALP.
Abstract: Primitive cells of the osteoblast lineage are not well characterized but are known to be present within the STRO-1+ fraction of adult human bone and marrow. A survey of human osteosarcoma cell lines revealed that STRO-1 is expressed by MG-63 but not SaOS-2. Among murine cell lines tested, expression of STRO-1 was detected in the bipotential (adipocyte/osteoblast) line BMS-2 but not the committed osteoblast precursor MC3T3-E1. A proportion of cultured adult human bone marrow stromal cells (BMSCs) consistently expressed the STRO-1 antigen. The expression of a range of cell surface antigens was studied in relation to STRO-1 by flow cytometry and several, including the bone/liver/kidney isoform of alkaline phosphatase (ALP), were found to subtype the STRO-1+ population of BMSCs. Further, BMSCs dual-labeled with antibodies recognizing STRO-1 and ALP could be assigned to one of four fractions: STRO-1-/ALP-, STRO-1+/ALP-, STRO-1+/ALP+, and STRO-1-/ALP+. Cells from each fraction could be isolated in high purity and, when recultured, remained viable and exhibited a limited degree of phenotypic stability. Using reverse transcriptase-polymerase chain reaction, cells in the four fractions were found to express different levels of transcripts for the parathyroid hormone receptor (PTHr) and bone sialoprotein (BSP). The expression of transcripts for the nuclear transcription factor core-binding factor alpha 1/osteoblast-specific factor-2 (CBFA1/OSF2) was restricted to those fractions expressing STRO-1 and/or ALP. Treatment with 10 nM dexamethasone consistently increased the proportion of cells present in those fractions which expressed the highest levels of transcripts for PTHr and BSP (STRO-1+/ALP+ and STRO-1-/ALP+) while simultaneously decreasing the proportion present in the STRO-1+/ALP- fraction. In conclusion, the expression of STRO-1 in vitro remains a characteristic of less well differentiated cells of the osteoblast lineage; in cultures of BMSCs and in established human osteosarcoma cell lines, there is an inverse association between the expression of STRO-1 and ALP; dual labeling of BMSCs with monoclonal antibodies recognizing STRO-1 and ALP permits the identification and isolation of cells of the osteoblast lineage at different stages of differentiation.

198 citations

Journal ArticleDOI
TL;DR: N-Ethylaminoethanol proved superior to the now widely used diethanolamine buffer, especially for the enzymes from the intestine and placenta, behaving as an uncompetitive activator.
Abstract: I studied the kinetics and sensitivity toward inhibition by levamisole and R 8231 of the most important human alkaline phosphatase isoenzymes. N-Ethylaminoethanol proved superior to the now widely used diethanolamine buffer, especially for the enzymes from the intestine and placenta, behaving as an uncompetitive activator. The optimum pH largely depends on the substrate concentration. The addition of Mg2+ has no effect on the activities. The meaning of Km-values for alkaline phosphatases is questioned. Isoenzymes from human liver, bone, kidney, and spleen are strongly inhibited by levamisole or R 8231 at concentrations that barely affect the enzymes from intestine or placenta. The inhibition is stereospecific, uncompetitive, and not changed by Mg2+. Inhibition is counteracted by increasing concentrations of N-ethylaminoethanol. The mechanism of inhibition is suggested to be formation of a complex with the phosphoenzyme.

198 citations

Journal ArticleDOI
TL;DR: Measurements of proliferation and alkaline phosphatase activity of preconfluent MSCs immediately after exposure to growth factor were not predictive of their subsequent osteochondrogenic potential.
Abstract: Mesenchymal progenitors cells can be isolated from rat bone marrow and mitotically expanded in vitro. When these cells, which we operationally call mesenchymal stem cells (MSCs), are placed in an appropriate environment, they have the capacity to differentiate into bone and/or cartilage. This capacity is called osteochondrogenic potential. In this study, preconfluent MSCs were exposed in vitro to 5 ng/ml transforming growth factor-beta 1 (TGF-beta 1) or platelet-derived growth factor, isoform BB (PDGF-BB) for a pulse of 48 h and assayed for cell proliferation, alkaline phosphatase activity, and osteochondrogenic potential; untreated MSC's served as controls. In these cell culture conditions, TGF-beta 1 or PDGF-BB had similar effects on proliferation and alkaline phosphatase activity. Both growth factors increased cell proliferation and decreased alkaline phosphatase activity of MSCs. Sister cultures of TGF-beta 1- or PDGF-BB-treated MSCs and untreated MSCs were trypsinized. For each type of culture, the trypsinised MSCs were split in two parts: one part was replated in an osteogenic medium to assess its in vitro osteogenic potential, whereas the other part was seeded into porous calcium phosphate ceramics and implanted subcutaneously in syngeneic rats to assess its in vivo osteochondrogenic potential. PDGF-pretreated MSCs showed no difference in in vivo and in vitro osteochondrogenesis from that of control MSCs, while TGF-beta 1 pretreatment blocked the osteochondrogenic potential of MSCs when assayed in vitro for bone nodule formation. However, when tested in vivo, TGF-beta 1-pretreated MSCs were able to form bone and cartilage. These data show that measurements of proliferation and alkaline phosphatase activity of preconfluent MSCs immediately after exposure to growth factor were not predictive of their subsequent osteochondrogenic potential. Moreover, the variation of the osteochondrogenic potential of MSCs after exposure to growth factor was further modulated by the environment in which the MSCs were assayed.

198 citations

Journal ArticleDOI
01 Jan 1991-Bone
TL;DR: It is concluded that nicotine suppresses cellular proliferation and stimulates alkaline phosphatase activity in UMR 106-01 osteoblast-like cells, and may be of significance in the development of osteoporosis and alveolar bone loss associated with the use of tobacco.

197 citations

Journal ArticleDOI
TL;DR: Kinetic measurement of GGT activity offers a simple, sensitive, and direct means for distinguishing whether bone or liver is the source of increased serum alkaline phosphatase activity.
Abstract: Serum γ-glutamyl transpeptidase (GGT), leucine aminopeptidase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase activities were assayed in controls and in patients with liver, pancreatic, or bone disease. GGT activity was above normal in all forms of liver disease studied (viral hepatitis, cirrhosis, cholecystitis, metastatic carcinoma to liver, pancreatic carcinoma, liver granuloma, and acute pancreatitis). GGT more sensitively indicated hepatic disease than did alkaline phosphatase, much more so than did leucine aminopeptidase. GGT was disproportionately more active in relation to the transaminases in cases of intraor extrahepatic biliary obstruction; the reverse was true in cases of viral hepatitis. GGT activity was normal in children, adolescents, and pregnant women, and in cases of bone disease and renal failure. Kinetic measurement of GGT activity offers a simple, sensitive, and direct means for distinguishing whether bone or liver is the source of increased serum alkaline phosphatase activity. Activity was highest in obstructive liver disease.

197 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Oxidative stress
86.5K papers, 3.8M citations
80% related
Gene expression
113.3K papers, 5.5M citations
80% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023795
20221,761
2021271
2020302
2019294