Topic
Alkylation
About: Alkylation is a(n) research topic. Over the lifetime, 29915 publication(s) have been published within this topic receiving 464944 citation(s). The topic is also known as: alkylation reaction.
Papers published on a yearly basis
Papers
More filters
TL;DR: Reaction of R,â-Unsaturated Carbonyl Compounds 3127: Reaction of R-UnSaturated Carbonies 3127 7.1.6.
Abstract: 4.2.8. Reductive Coupling 3109 5. Reaction of Aromatic Compounds 3110 5.1. Electrophilic Substitutions 3110 5.2. Radical Substitution 3111 5.3. Oxidative Coupling 3111 5.4. Photochemical Reactions 3111 6. Reaction of Carbonyl Compounds 3111 6.1. Nucleophilic Additions 3111 6.1.1. Allylation 3111 6.1.2. Propargylation 3120 6.1.3. Benzylation 3121 6.1.4. Arylation/Vinylation 3121 6.1.5. Alkynylation 3121 6.1.6. Alkylation 3121 6.1.7. Reformatsky-Type Reaction 3122 6.1.8. Direct Aldol Reaction 3122 6.1.9. Mukaiyama Aldol Reaction 3124 6.1.10. Hydrogen Cyanide Addition 3125 6.2. Pinacol Coupling 3126 6.3. Wittig Reactions 3126 7. Reaction of R,â-Unsaturated Carbonyl Compounds 3127
1,945 citations
TL;DR: The conceptual basis and utility of the latest, "fourth-generation" palladium catalyst for the coupling of amines and related reagents with aryl halides is described and the effects of electronic properties on C-C and C-N bond-forming reductive elimination are similar.
Abstract: Many active pharmaceuticals, herbicides, conducting polymers, and components of organic light-emitting diodes contain arylamines. For many years, this class of compound was prepared via classical methods, such as nitration, reduction and reductive alkylation, copper-mediated chemistry at high temperatures, addition to benzyne intermediates, or direct nucleophilic substitution on particularly electron-poor aromatic or heteroaromatic halides. However, during the past decade, palladium-catalyzed coupling reactions of amines with aryl halides have largely supplanted these earlier methods. Successive generations of catalysts have gradually improved the scope and efficiency of the palladium-catalyzed reaction. This Account describes the conceptual basis and utility of our latest, "fourth-generation" palladium catalyst for the coupling of amines and related reagents with aryl halides. In the past five years, we have developed these catalysts using the lessons learned from previous generations of catalysts developed in our group and in other laboratories. The ligands on the fourth-generation catalyst combine the chelating properties of the aromatic bisphosphines of the second-generation systems with the steric properties and strong electron donation of the hindered alkylphosphines of the third-generation systems. The currently most reactive catalyst in this class is generated from palladium and a sterically hindered version of the Josiphos family of ligands that possesses a ferrocenyl-1-ethyl backbone, a hindered di-tert-butylphosphino group, and a hindered dicyclohexylphosphino group. This system catalyzes the coupling of aryl chlorides, bromides, and iodides with primary amines, N-H imines, and hydrazones in high yield. The reaction has broad scope, high functional group tolerance, and nearly perfect selectivity for monoarylation. It also requires the lowest levels of palladium that have been used for C-N coupling. In addition, this latest catalyst has dramatically improved the coupling of thiols with haloarenes to form C-S bonds. Using ligands that lacked one or more of the structural elements of the most active catalyst, we examined the effects of individual structural elements of the Josiphos ligand on catalyst activity. This set of studies showed that each one of these elements contributes to the high reactivity and selectivity of the catalyst containing the hindered, bidentate Josiphos ligand. Finally, we examined the effect of electronic properties on the rates of reductive elimination to distinguish between the effect of the properties of the M-N sigma-bond and the nitrogen electron pair. We have found that the effects of electronic properties on C-C and C-N bond-forming reductive elimination are similar. Because the amido ligands contain an electron pair, while the alkyl ligands do not, we have concluded that the major electronic effect is transmitted through the sigma-bond.
1,398 citations
TL;DR: In this paper, an enantioselective alkylation of aldehydes using diastereomeric (homochiral and heterochiral) dinuclear complexes formed from the dialkylzinc and the DAIB auxiliary is described.
Abstract: Nucleophilic addition of organometallic reagents to carbonyl substrates constitutes one of the most fundamental operations in organic synthesis. Modification of the organometallic compounds by chiral, nonracemic auxiliaries offers a general opportunity to create optically active alcohols, and the catalytic version in particular provides maximum synthetic efficiency. The use of organozinc chemistry, unlike conventional organolithium or -magnesium chemistry, has realized an ideal catalytic enantioselective alkylation of aldehydes leading to a diverse array of secondary alcohols of high optical purity. A combination of dialkylzinc compounds and certain sterically constrained β-dialkylamino alcohols, such as (–)-3-exo-dimethylaminoiso- borneol [(–)-DAIB], as chiral inducers affords the best result (up to 99% ee). The alkyl transfer reaction occurs via a dinuclear Zn complex containing a chiral amino alkoxide, an aldehyde ligand, and three alkyl groups. The chiral multiplication method exhibits enormous chiral amplification: a high level of enantioselection (up to 98%) is attainable by use of DAIB in 14% ee. This unusual nonlinear effect is a result of a marked difference in chemical properties of the diastereomeric (homochiral and heterochiral) dinuclear complexes formed from the dialkylzinc and the DAIB auxiliary. This phenomenon may be the beginning of a new generation of enantioselective organic reactions.
1,021 citations
TL;DR: Propargyl ethers HCCCH2OR [R = alkyl or-CH(CH8)(OC2H5)] have been isomerized with good yields into the corresponding allenyl ether's CH2CCHOR by warming with potassium tert-butoxide at 70°.
Abstract: Propargyl ethers HCCCH2OR [R = alkyl or-CH(CH8)(OC2H5)] have been isomerized with good yields into the corresponding allenyl ethers CH2CCHOR by warming with potassium tert.-butoxide at 70°.
These allenyl ethers can be metallated with butyllithium in ether or alkali amides in liquid ammonia. In ether, subsequent alkylation with alkyl halides R′Hal affords α-substituted allenyl ethers CH2CC(R′)OR. Alkylation in liquid ammonia produces a mixture of this same compound and the γ-substituted product R′CHCCHOR. In both cases reasonable yields are obtained. Sodamide and potassium amide quickly convert allenyl ethers CH2CCHOR into metallated propargyl ethers MCC-CH2OR (M = Na or K). If alkylation is not performed almost simultaneously with the metallation with sodamide or potassium amide, the only alkylation product obtained is R′CCCH2OR.
943 citations
914 citations