scispace - formally typeset
Search or ask a question

Showing papers on "Allelopathy published in 2003"


Journal ArticleDOI
TL;DR: Recent research onRoot exudation and the role of allelochemicals in the rhizosphere is outlined by studying the case of three plants that have been shown to produce allelopathic root exudates: black walnut, wheat and sorghum.
Abstract: Plant roots serve a multitude of functions in the plant including anchorage, provision of nutrients and water, and production of exudates with growth regulatory properties. The root–soil interface, or rhizosphere, is the site of greatest activity within the soil matrix. Within this matrix, roots affect soil structure, aeration and biological activity as they are the major source of organic inputs into the rhizosphere, and are also responsible for depletion of large supplies of inorganic compounds. Roots are very complicated morphologically and physiologically, and their metabolites are often released in large quantities into the soil rhizosphere from living root hairs or fibrous root systems. Root exudates containing root-specific metabolites have critical ecological impacts on soil macro and microbiota as well as on the whole plant itself. Through the exudation of a wide variety of compounds, roots impact the soil microbial community in their immediate vicinity, influence resistance to pests, support beneficial symbioses, alter the chemical and physical properties of the soil, and inhibit the growth of competing plant species. In this review, we outline recent research on root exudation and the role of allelochemicals in the rhizosphere by studying the case of three plants that have been shown to produce allelopathic root exudates: black walnut, wheat and sorghum

1,207 citations


Journal ArticleDOI
TL;DR: Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that all primary producing organisms (cyanobacteria, micro- and macroalgae as well as angiosperms) are capable of producing and releasing allelopathically active compounds.
Abstract: Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition between different photoautotrophs for resources and change the succession of species, for example, in phytoplankton communities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that all primary producing organisms (cyanobacteria, micro- and macroalgae as well as angiosperms) are capable of producing and releasing allelopathically active compounds. Although allelopathy also includes positive (stimulating) interactions, the majority of studies describe the inhibitory activity of allelopathically active compounds. Different mechanisms operate depending on whether allelopathy takes place in the open water (pelagic zone) or is substrate associated (benthic habitats). Allelopathical interactions are especially common in fully aquatic s...

584 citations


Journal ArticleDOI
TL;DR: It is argued that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species.
Abstract: The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naive to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.

566 citations


Journal ArticleDOI
13 Jun 2003-Planta
TL;DR: Five aspects of allelochemicals are discussed from an ecophysiological perspective: biosynthesis, modes of release, mode of action, detoxification and prevention of autotoxicity, and joint action of alleLochemicals.
Abstract: Allelochemicals play an important role in explaining plant growth inhibition in interspecies interactions and in structuring the plant community. Five aspects of allelochemicals are discussed from an ecophysiological perspective: (i) biosynthesis, (ii) mode of release, (iii) mode of action, (iv) detoxification and prevention of autotoxicity, and (v) joint action of allelochemicals. A discussion on identifying a compound as an allelochemical is also presented.

521 citations


Journal ArticleDOI
TL;DR: It is suggested that phytoplankton allelochemicals have the potential for management of HABs in localized areas and the possibility of using allelopathic agents to combat harmful algal blooms (HABs) is discussed.
Abstract: It is considered self-evident that chemical interactions are a component of competition in terrestrial systems, but they are largely unknown in aquatic systems. In this review, we propose that chemical interactions, specifically allelopathy, are an important part of phytoplankton competition. Allelopathy, as defined here, applies only to the inhibitory effects of secondary metabolites produced by one species on the growth or physiological function of another phytoplankton species. A number of approaches are used to study allelopathy, but there is no standard methodology available. One of the methods used is cross-culturing, in which the cell-free filtrate of a donor alga is added to the medium of the target species. Another is to study the effect of cell extracts of unknown constituents, isolated exudates or purified allelochemicals on the growth of other algal species. There is a clear lack of controlled field experiments because few allelochemicals have been identified. Molecular methods will be important in future to study the expression and regulation of allelochemicals. Most of the identified allelochemicals have been described for cyanobacteria but some known toxins of marine dinoflagellates and freshwater cyanobacteria also have an allelochemical effect. The mode of action of allelochemicals spans a wide range. The most common effect is to cause cell lysis, blistering, or growth inhibition. The factors that affect allelochemical production have not been studied much, although nutrient limitation, pH, and temperature appear to have an effect. The evolutionary aspects of allelopathy remain largely unknown, but we hypothesize that the producers of allelochemicals should gain a competitive advantage over other phytoplankton. Finally, we discuss the possibility of using allelochemicals to combat harmful algal blooms (HABs). Allelopathic agents are used for biological control in agriculture, e.g. green manures to control soil diseases in Australia, but they have not yet been applied in the context of HABs. We suggest that phytoplankton allelochemicals have the potential for management of HABs in localized areas. (Less)

466 citations


Journal ArticleDOI
TL;DR: This review attempts to discuss all aspects of allelopathy for the sustainable management of weeds.
Abstract: Weeds are known to cause enormous losses due to their interference in agroecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard the phenomenon of allelopathy, which is expressed through the release of chemicals by a plant, has been suggested to be one of the possible alternatives for achieving sustainable weed management. The use of allelopathy for controlling weeds could be either through directly utilizing natural allelopathic interactions, particularly of crop plants, or by using allelochemicals as natural herbicides. In the former case, a number of crop plants with allelopathic potential can be used as cover, smother, and green manure crops for managing weeds by making desired manipulations in the cultural practices and cropping patterns. These can be suitably rotated or intercropped with main crops to manage the target weeds (including parasitic ones) selectively. Even the crop mulch/residues can also give desirable benefits. Not only the terrestrial weeds, even allelopathy can be suitably manipulated for the management of aquatic weeds. The allelochemicals present in the higher plants as well as in the microbes can be directly used for weed management on the pattern of herbicides. Their bioefficacy can be enhanced by structural changes or the synthesis of chemical analogues based on them. Further, in order to enhance the potential of allelopathic crops, several improvements can be made with the use of biotechnology or genomics and proteomics. In this context either the production of allelochemicals can be enhanced or the transgenics with foreign genes encoding for a particular weed-suppressing allelochemical could be produced. In the former, both conventional breeding and molecular genetical techniques are useful. However, with conventional breeding being slow and difficult, more emphasis is laid on the use of modern techniques such as molecular markers and the selection aided by them. Although the progress in this regard is slow, nevertheless some promising results are coming and more are expected in future. This review attempts to discuss all these aspects of allelopathy for the sustainable management of weeds.

420 citations


Journal ArticleDOI
TL;DR: A new challenge that exists for future plant scientists is to generate additional information on allelochemical mechanisms of release, selectivity and persistence, mode of action, and genetic regulation so as to further protect plant biodiversity and enhance weed management strategies in a variety of ecosystems.
Abstract: Allelopathy can be defined as an important mechanism of plant interference mediated by the addition of plant-produced secondary products to the soil rhizosphere. Allelochemicals are present in all types of plants and tissues and are released into the soil rhizosphere by a variety of mechanisms, including decomposition of residues, volatilization, and root exudation. Allelochemical structures and modes of action are diverse and may offer potential for the development of future herbicides. We have focused our review on a variety of weed and crop species that establish some form of potent allelopathic interference, either with other crops or weeds, in agricultural settings, in the managed landscape, or in naturalized settings. Recent research suggests that allelopathic properties can render one species more invasive to native species and thus potentially detrimental to both agricultural and naturalized settings. In contrast, allelopathic crops offer strong potential for the development of cultivars that are ...

399 citations


Journal ArticleDOI
TL;DR: Although the use of herbicides can be reduced by exploiting allelopathy as an alternate weed management tool for crop production against weeds and other pests, numerous examples of employing crop residues, cover crops and allelopathic crop cultivars in weed management are provided.

308 citations


Journal ArticleDOI
TL;DR: Root peroxidase and superoxide dismutase activities increased significantly after exposure to allelopathic agents, and Membrane peroxidation was also enhanced by root exudates, root extracts and some of the tested acids.

283 citations



Journal ArticleDOI
TL;DR: The methodological approaches that may best develop studies of allelopathy in the future are discussed, with a focus on field experiments in boreal forests in Sweden with Empetrum hermaphroditumHagerup and Scots pine.
Abstract: The primary aim of this paper is to discuss the methodological approaches that may best develop studies of allelopathy in the future. Laboratory studies on the functions of isolated chemicals, no matter how mechanistically detailed, cannot demonstrate the significance of allelopathy in communities. Evidence for allelopathy in natural plant communities should include information of concentrations and release rates such as demonstrated in field soils for (±)-catechin and Centaurea maculosaLam. Community-relevant evidence for allelopathy should include some manipulation of exudates such as performed in many experiments with activated carbon and gel filtration columns. Realistic evidence for allelopathy should include separation of resource effects from chemical effects; such as demonstrated by experiments with activated carbon additions, density-dependent responses to additions of competitors and chemicals, and resource addition treatments. Community-relevant evidence should link laboratory effects to field patterns and experiments; such as the links between the inhibitory effects of roots of Larrea tridentataCov., the highly spatially segregated root systems and regular above-ground spacing of this species, strong spatial disassociation of L. tridentata with other species, and removal experiments indicating that segregation of L. tridentata root systems via allelopathy may feed back to sequestering of resource use. Studies of allelopathy should consider chemically initiated shifts in microbial populations, and the effects of organic and inorganic soil components on the function of exudates; which has been done in a number of studies. Finally, studies of allelopathy should include large-scale manipulation of chemical effects; such as performed in field experiments in boreal forests in Sweden with Empetrum hermaphroditumHagerup and Scots pine (Pinus sylvestrisL.). Demonstrating the occurrence and importance of chemically mediated interactions among plants is not trivial. If even a small portion of the thousands of chemicals produced by different plant species have effects on their neighbours, then species-specific interactions, natural selection, community integration, and community coevolution may be quite different than predicted by conceptual models based solely on resource competition. Appropriate methodology is crucial for integrating chemically mediated interactions into ecological theory.

Journal ArticleDOI
TL;DR: S. montana essential oil, with 57% carvacrol, is the most active compound, completely inhibiting germination both of crops and weeds.
Abstract: The essential oils obtained from rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and savory (Satureja montana L.) and the four monoterpenes that are their major constituents have been analyzed by GC and GC-MS and tested for their allelopathic properties on the seeds of three different annual weeds (Chenopodium album, Portulaca oleracea, and Echinochloa crus-galli) and three crops (Raphanus sativus, Capsicum annuum, and Lactuca sativa), with the aim to evaluate in vitro their potential as germination inhibitors. The essential oil composition varied with the species, thymol being the main constituent (44%) of thyme and carvacrol (57%) that of savory oil. Differences in essential oil composition were observed within two different rosemary ecotypes, type A, with alpha-pinene (37%) and 1,8-cineole (23%), and type B, characterized by a 2-fold content of 1,8-cineole (47%). This latest essential oil inhibited completely the germination of weeds while concurrently displaying little effect on pepper. The other two oils showed less selective action. S. montana essential oil, with 57% carvacrol, is the most active compound, completely inhibiting germination both of crops and weeds. Borneol, one of the main constituents of the oil of rosemary type B, showed an activity comparable to that of the whole oil. Crop and weed seeds treated with 1,8-cineole showed germination values that were not significantly different from controls, even if a slowing of the germination process expressed in terms of a significant increase in mean germination time was observed. Monoterpene compounds also present in the essential oils mainly represented the volatile fraction released from the crops and their residues into the soil.

Journal ArticleDOI
TL;DR: Black mustard contains water-soluble substances that inhibited the germination and seedling growth of wild oat and this study investigated the allelopathic effects of various B. nigra plant parts on A. fatua L. germination, seedling length and weight.


Journal ArticleDOI
TL;DR: The allelopathic activity of two submersed macrophytes with different growth forms and nutrient uptake modes, Ceratophyllum demersum and Najas marina ssp.
Abstract: We investigated the allelopathic activity of two submersed macrophytes with different growth forms and nutrient uptake modes, Ceratophyllum demersum and Najas marina ssp. intermedia. A bioassay-directed method development revealed optimal extraction solvents for allelochemicals from both macrophytes. For Najas, 50% methanol and for Ceratophyllum 50% acetone yielded the strongest inhibition in the agar-diffusion assay with various filamentous or chroococcal cyanobacteria as target species. Further fractionation by liquid–liquid extraction (LLE) and solid phase extraction (SPE) procedures showed that both aquatic plants appear to have more than one active fraction, one being hydrophilic and one moderately lipophilic. The water-soluble allelochemicals may inhibit phytoplankton whereas the lipophilic allelochemicals may act through direct cell–cell contact, e.g., against epiphytes. Both macrophytes also exuded allelopathically active compounds into the surrounding medium as shown by SPE of their incubation water.

Journal ArticleDOI
TL;DR: It is suggested that allelopathy may be a possible mechanism controlling the timing of chenopod germination and seedling establishment in the arid and semi-arid zones of Western Australia.

Journal ArticleDOI
TL;DR: Growth of wild barley, as indicated by plant height and weight, was significantly reduced when grown in soil previously cropped to black mustard compared with that cropped to wild barley.
Abstract: Black mustard [Brassica nigra (L.) Koch.] contains water-soluble allelochemicals that inhibit the germination and growth of other species. This characteristic could be used in weed management programmes. Greenhouse and laboratory experiments were conducted to determine the effects on wild barley (Hordeum spontaneum Koch.) germination and seedling growth of (i) preceding crops, (ii) fresh black mustard residue incorporation, and (iii) black mustard leaf, stem, flower and root water extract concentrations. Growth of wild barley, as indicated by plant height and weight, was significantly reduced when grown in soil previously cropped to black mustard compared with that cropped to wild barley. Soil incorporation of fresh black mustard roots and both roots and shoots reduced wild barley germination, plant height and weight when compared with a no-residue control. In bioassays, black mustard extracts reduced wild barley hypocotyl length, hypocotyl weight, radicle weight, seed germination, and radicle length by as much as 44, 55, 57, 63 and 75 %, respectively, when compared with a water control. Increasing the water extract concentrations from 4 to 20 g per 100 ml of water of all black mustard parts significantly increased the inhibition of wild barley germination, seedling length and weight. Based on 8-day-old wild barley radicle length, averaged across all extract concentrations, the degree of toxicity of different black mustard plant parts can be ranked in the following order of inhibition: leaves > flowers > mixture of all plant parts > stems > roots.

Journal ArticleDOI
TL;DR: Data indicate that wild radish aqueous extract or incorporated residues suppress seed germination, radicle growth, seedling emergence, and seedling growth of certain crops and weeds and these responses are attributed to an allelochemical effect.
Abstract: The allelopathic potential of wild radish was evaluated in controlled environments by determining if an aqueous extract from oven-dried wild radish shoots suppressed germination and radicle growth of some crops and weeds common to the southeastern United States. In addition, phytotoxicity from topical applications of the aqueous extract was assessed, along with crop and weed suppression by soil incorporated, air-dried wild radish residues. Germination and radicle growth of all species were reduced by the extract compared with distilled water. However, topical applications of the aqueous extract failed to induce injury on any species by 7 d after treatment. Emergence and shoot fresh weight of the bioassay plants were reduced by wild radish residue incorporated into soil, with the level of suppression dependent on the quantity of residue incorporated. Sicklepod and prickly sida were extremely sensitive to incorporated wild radish residues, with > 95% fresh weight reduction at 0.5% (wt/wt) residue, compared ...

Journal ArticleDOI
TL;DR: The results suggest that some Compositae have various herbicidal potentials, and that their activities, types and amount of causative compounds differ, depending on the plant species.
Abstract: Summary Compositae plants contain biologically active substances that are allelopathic to weed species. Aqueous extracts from leaves of 16 plants were bioassayed against lucerne (Medicago sativa) to determine their allelopathic effects, and the results showed the highest inhibition for the extracts from Lactuca sativa, Xanthium occidentale and Cirsium japonicum. The extracts applied to filter paper in Petri-dish bioassay tests significantly inhibited root growth of lucerne. Extracts of 40 g dry tissue L−1 from L. sativa, X. occidentale and C. japonicum were completely inhibitory to lucerne root growth, but hypocotyl growth of lucerne was less sensitive. Although allelopathic effects of methanol extracts were much less than those of coumarin or alachlor, early seedling growth of both lucerne and Echinochloa crus-galli was significantly reduced by methanol extracts. Mixture of L. sativa, X. occidentale and C. japonicum extracts had more inhibitory effects on test plants than each single extract treatment. By means of high-performance liquid chromatography, responsible causative allelopathic substances present in L. sativa, X. occidentale and C. japonicum were isolated from various fractions and identified as coumarin, trans-cinnamic acid, o-coumaric acid and p-coumaric acid. These results suggest that some Compositae have various herbicidal potentials, and that their activities, types and amount of causative compounds differ, depending on the plant species.

Journal ArticleDOI
TL;DR: In this paper, aqueous and organic solvent extracts of the aerial parts of common buckwheat inhibited the root and shoot growth of lettuce seedlings in laboratory and field experiments.
Abstract: Laboratory and field experiments were conducted to assess the allelopathic potential of buckwheat. In the field, buckwheat demonstrated strong inhibitory activity by suppressing weeds. In laboratory studies, aqueous and organic solvent extracts of the aerial parts of common buckwheat inhibited the root and shoot growth of lettuce seedlings. The chloroform and ethyl acetate extracts showed maximum activity, and plants grown in the presence of the ethyl acetate extract showed severe root browning. The allelopathic constituents of the ethyl acetate phase were isolated and identified as gallic acid and (+)-catechin by nuclear magnetic resonance spectroscopy. Gallic acid and (+)-catechin were present in the upper part of buckwheat at concentrations of 0.02 and 0.01%, of fresh weight, respectively. Gallic acid was found to be selectively and strongly inhibitory to root and shoot growth of tested plants at 100 and 10 μg ml−1. (+)-Catechin, however, inhibited plant growth to a lesser extent. These result...

Journal ArticleDOI
TL;DR: The aqueous root extract of Ailanthus altissima showed allelopathic activity against radish, garden cress, and purslane seeds, suggesting a possible use of tree-of-heaven root extracts or of its active constituents as natural herbicides.
Abstract: The aqueous root extract of Ailanthus altissima showed allelopathic activity against radish (Raphanus sativus L. cv. "Saxa"), garden cress (Lepidium sativum L.), and purslane (Portulaca oleracea L.) seeds. A bioassay-oriented purification of active extracts, chromatographic fractions, and compounds demonstrated dose-dependent activity on germination and radicle growth of test seeds; radish seed was the most sensitive to allelochemicals. Active compounds have been isolated: ailanthone, ailanthinone, chaparrine, and ailanthinol B (quassinoid derivatives); the alkaloid 1-methoxycanthin-6-one is not active. The compound with greatest inhibitory activity is ailanthone. The data obtained suggest a possible use of tree-of-heaven root extracts or of its active constituents as natural herbicides.

Journal ArticleDOI
TL;DR: It is found that intercropping with marigold induced a significant reduction in tomato early blight caused by A. solani, by means of three different mechanisms, including the allelopathic effect of marigolds on A.solani conidia germination, as it was shown in vitro conditions and the microclimatic conditions around the canopy.

Book ChapterDOI
01 Jan 2003
TL;DR: Roots of many weed and crop species contribute biologically active chemicals into the environment known as root exudates, which are known to influence growth and establishment of crop and weed species, and these are released from living root systems.
Abstract: Roots of many weed and crop species contribute biologically active chemicals into the environment known as root exudates. Root exudates are known to influence growth and establishment of crop and weed species, and these are released from living root systems. Many perennial woody and herbaceous plants have deep and extensive root/rhizome subterranean systems, which can produce prolific amounts of root exudates over long periods of time. Root exudates contribute many types of organic compounds to the rhizosphere. In addition to simple and complex sugars and growth regulators, root exudates contain different classes of primary and secondary compounds including amino acids, organic acids, phenolic acids, flavonoids, enzymes, fatty acids, nucleotides, tannins, steroids, terpenoids, alkaloids, polyacetylenes, and vitamins (Table 10.1; Rovira 1969; Schonwitz and Ziegler 1982; Rice 1984; Uren 2000). Uren (2000) suggested that the amount of root exudates produced varies with the plant species, cultivar, the age of the plant, and substrate and stress factors.

Journal ArticleDOI
TL;DR: The results suggest that rice body parts may be a source of natural herbicides and that it is necessary to develop acceptable selection standards for allelopathic rice varieties.
Abstract: The use of rice (Oryza satisa L) allelopathy for weed control is a new technology in agronomy A laboratory bioassay using water extracts was conducted to determine the allelopathic potential of rice body parts on seed germination and growth of barnyardgrass (Echinochloa crus-galli P Beauv var oryzicola Ohwi) and to determine rapid and simple methods for selecting allelopathic rice varieties using genetic characters and phenotypes In this study, the highest inhibition rate was for 'Danganeuibangju' (769%) in straw extracts, 'Dongobyeo' (741%) in the leaves, and 'Back' (317%) in the hull 'CUBA 65-v-58' (386%) had the highest inhibition as a whole (average of leaves, straw, and hull), and there was a higher average inhibitory effect for straw extracts (216%) than for hulls (82%) and leaves (124%) With regard to classification by phenotypic and genetic characteristics, these groups showed a higher inhibitory effect in domestic varieties (142%), middle-maturing varieties (153%), varieties of hull color (151%), and varieties of awn color (160%) These results suggest that rice body parts may be a source of natural herbicides and that it is necessary to develop acceptable selection standards There may also be genetic variation in rice varieties for their allelopathic potential on barnyardgrass In the future, it might be possible to develop rice varieties with high allelopathic potential

Journal ArticleDOI
TL;DR: Past and recent findings concerning the allelopathic activity of the Poaceae family are reviewed, the type of the activity (stimulative or inhibitive), the donor plant, the target species, and the mode of action in each case are reviewed.
Abstract: The Poaceae family has been reported in several published works to show evidence of allelopathic activity. Secondary metabolites as phenolic compounds, hydroxamic acids, flavonoids, etc. commonly occur in both cultivated and wild Gramineae. This article, therefore, attempts to review and synthesize past and recent findings concerning the allelopathic activity of this family. It reviews the type of the activity (stimulative or inhibitive), the donor plant, the target species, and the mode of action in each case.

Journal ArticleDOI
TL;DR: An improved allelopathic correlation between phytotoxicity measured in root growth bioassay upon annual ryegrass and the concentrations of a selection of dynamically produced allelochemicals quantified in the root exudates of cv.
Abstract: An improved allelopathic correlation between phytotoxicity measured in root growth bioassay upon annual ryegrass (Lolium rigidum Gaud.) and the concentrations of a selection of dynamically produced allelochemicals quantified in the root exudates of cv. Khapli wheat (Triticum turgidum ssp. durum (Desf.) Husn.) monitored during the first 15 days of wheat seedling growth in a sterile, agar-water medium, has been established. Changes over the 15-day growth period in the quantities of five exuded benzoxazinones and seven phenolic acids were measured simultaneously using GC/MS/MS. Substantiating pure compound dose-response measurements were conducted over a range of concentrations for the putative allelochemicals within the wheat exudates. One synergism-based proposal using the monitored compounds to explain the observed low-exudate-concentration phytotoxicity was explored, but was found to be experimentally inadequate.

Journal ArticleDOI
TL;DR: The linkage analysis of genetic markers and the QTLs may improve genetic gains for the allelopathic activity through marker-assisted selection in wheat breeding and reduce the over-reliance of weed control on synthetic herbicides.
Abstract: Wheat (Triticum aestivum L.) has been examined for allelopathic potential against annual ryegrass (Lolium rigidum). The bioassay technique, 'equal-compartment-agar-method', was employed to evaluate seedling allelopathy in a doubled-haploid (DH) population derived from cv Sunco (weakly allelopathic) and cv Tasman (strongly allelopathic). A significant difference in allelopathic activity was found among the DH lines, which inhibited the root length of ryegrass across a range from 23.7 to 88.3%. The phenotypic data showed that wheat allelopathic activity was distributed normally within this DH population and a substantial transgressive segregation for seedling allelopathic activity was also found. Analysis of restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and microsatellite (SSRs) markers identified two major QTLs on chromosome 2B associated with wheat allelopathy. The linkage analysis of genetic markers and the QTLs may improve genetic gains for the allelopathic activity through marker-assisted selection in wheat breeding. The development of wheat allelopathic cultivars could reduce the over-reliance of weed control on synthetic herbicides.

Journal ArticleDOI
TL;DR: Findings indicated inhibitory exhibition of allelopathic plants were species dependent and inhibitory effects varied among plant parts such as the leaves, stem and root.

Journal ArticleDOI
TL;DR: In this paper, the importance of these interactions among aquatic macrophytes and between macrophyte and attached microbial assemblages (epiphyton) is poorly understood; the authors hypothesize that paucity has resulted from a narrow focus on exploration for herbicidal plant products from aquatic microphytes, and the difficulties in distinguishing resource competition from allelopathic interference, and a predominance of approaching aquatic allelopathy from a terrestrial perspective.
Abstract: Allelochemical interactions among aquatic macrophytes and between macrophytes and attached microbial assemblages (epiphyton) influence a number of ecological processes The ecological importance of these interactions, however, is poorly understood; we hypothesize that paucity has resulted, in part, from (1) a narrow focus on exploration for herbicidal plant products from aquatic macrophytes, (2) the difficulties in distinguishing resource competition from allelopathic interference, and (3) a predominance of approaching aquatic allelopathy from a terrestrial perspective Based upon recent thorough investigations of allelopathy among aquatic vascular plants, chemical compounds that influence competitive interactions among littoral organisms are amphiphilic compounds that tend to remain near the producing organism (eg, polyphenolic compounds and volatile fatty acids) Production of these compounds may be influenced by relative availability of nutrients (particularly phosphorus and nitrogen), inorganic carbon, and light Macrophyte strategies of clonal reproduction, in an effort to persist in these highly productive and competitive habitats, have contributed to reduced reliance upon sexual reproduction that is correlated with allelopathic autotoxicity among several dominant wetland plant species Although few studies document the importance of allelochemical interactions in the wetland and littoral zones of aquatic ecosystems, abundant evidence supports the potential for significant effects on competition and community structure; effects of altered nutrient ratios and availability on plant chemical composition; and resultant effects on trophic interactions, particularly suppression of herbivory, competitive attached algae and cyanobacteria, and heterotrophic utilization of organic matter by bacteria and fungi

Journal ArticleDOI
TL;DR: The response of the bird cherry-oat aphid, Rhopalosiphum padi, to barley plants was investigated following exposure of the plants to root allelochemicals from the aggressive weed couch-grass, Elytrigia (Agropyron) repens.
Abstract: The response of the bird cherry-oat aphid, Rhopalosiphum padi, to barley plants was investigated following exposure of the plants to root allelochemicals from the aggressive weed couch-grass, Elytrigia (Agropyron) repens. Plants were treated either with root exudates from living couch-grass plants or with previously identified couch-grass root compounds [5-hydroxyindole-3-acetic acid, DL-5-hydroxytryptophan, L-5-hydroxytryptophan hydrate, and 6-hydroxy-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (carboline)] either separately or in mixtures. In choice and no-choice settling tests, aphid acceptance of barley plants was significantly reduced following treatment with root exudates, and the carboline when tested alone or in combination with the other compounds. In contrast, the other compounds without the carboline were less active in reducing aphid acceptance. In a probing bioassay, individual substances were either neutral or stimulatory to aphids, indicating that the reduced settling was probably not due to direct effects on aphids, but rather due to effects on the plant. This was confirmed in olfactometer assays, in which aphids were repelled by odors from barley plants following treatment with a mixture containing all four chemicals.