scispace - formally typeset
Search or ask a question
Topic

Alternating decision tree

About: Alternating decision tree is a research topic. Over the lifetime, 1109 publications have been published within this topic receiving 132403 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Book
01 Jan 1983
TL;DR: The methodology used to construct tree structured rules is the focus of a monograph as mentioned in this paper, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
Abstract: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

14,825 citations

Journal ArticleDOI
01 Jun 1991
TL;DR: The subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed, and the relation between decision trees and neutral networks (NN) is also discussed.
Abstract: A survey is presented of current methods for decision tree classifier (DTC) designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, the subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed. The relation between decision trees and neutral networks (NN) is also discussed. >

3,176 citations

Proceedings ArticleDOI
24 Jul 1998
TL;DR: Several improvements to Freund and Schapire’s AdaBoost boosting algorithm are described, particularly in a setting in which hypotheses may assign confidences to each of their predictions.
Abstract: We describe several improvements to Freund and Schapire‘s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multi-label case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper.

2,900 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
84% related
Artificial neural network
207K papers, 4.5M citations
82% related
Support vector machine
73.6K papers, 1.7M citations
81% related
Deep learning
79.8K papers, 2.1M citations
80% related
Fuzzy logic
151.2K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202222
202129
202021
201932
201821