scispace - formally typeset
Search or ask a question
Topic

Aluminium

About: Aluminium is a research topic. Over the lifetime, 46934 publications have been published within this topic receiving 556441 citations. The topic is also known as: Al & element 13.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.

1,811 citations

Journal ArticleDOI
TL;DR: In this paper, the authors cover the latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques, including laser beam welding and friction stir welding, and compare them with the traditional aluminum alloys.

1,726 citations

Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: A rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode, found to enable fast anion diffusion and intercalation, and to withstand more than 7,500 cycles without capacity decay.
Abstract: An aluminium-ion battery is reported that can charge within one minute, and offers improved cycle life compared to previous devices; it operates through the electrochemical deposition and dissolution of aluminium at the anode, and the intercalation/de-intercalation of chloroaluminate anions into a novel graphitic-foam cathode. The low cost and useful electrical properties of aluminium suggest that rechargeable Al-ion batteries could offer viable and safe battery technology, but problems with cathode materials, poor cycling performance and other complications have persisted. Here Hongjie Dai and colleagues describe an Al-ion battery that can charge within one minute and offers substantially improved cycle life with little decay in capacity compared to previous devices reported in the literature. The battery operates through the electrochemical deposition and dissolution of Al and intercalation/de-intercalation of chloroaluminate anions into a novel 3D graphitic foam cathode using a non-flammable ionic liquid electrolyte. The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage1,2. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity3. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration4, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1–0.2 volts6 or 1.8–0.8 volts7) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26–85 per cent over 100 cycles)4,5,6,7. Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g–1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g–1 (equivalent to ~3,000 W kg–1), and to withstand more than 7,500 cycles without capacity decay.

1,671 citations

Journal ArticleDOI
TL;DR: In this paper, a reversible hydrogen storage system based on catalyzed reactions is proposed, where the catalytic acceleration of the reactions in both directions is achieved by doping alkali metal aluminium hydrides with a few mol% of selected Ti compounds.

1,671 citations

Journal ArticleDOI
20 Sep 2017-Nature
TL;DR: The approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines, and provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting.
Abstract: Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.

1,670 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Carbon
129.8K papers, 2.7M citations
88% related
Coating
379.8K papers, 3.1M citations
86% related
Silicon
196K papers, 3M citations
86% related
Hydrogen
132.2K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,483
20226,845
20211,319
20201,502
20191,904
20182,766