scispace - formally typeset
Search or ask a question
Topic

Amacrine cell

About: Amacrine cell is a research topic. Over the lifetime, 1392 publications have been published within this topic receiving 64016 citations. The topic is also known as: amacrine cell & amacrine cells.


Papers
More filters
Journal ArticleDOI
TL;DR: The unique inner retinal localization of melanopsin suggests that it is not involved in image formation but rather may mediate nonvisual photoreceptive tasks, such as the regulation of circadian rhythms and the acute suppression of pineal melatonin.
Abstract: Here we report the identification of a novel human opsin, melanopsin, that is expressed in cells of the mammalian inner retina. The human melanopsin gene consists of 10 exons and is mapped to chromosome 10q22. This chromosomal localization and gene structure differs significantly from that of other human opsins that typically have four to seven exons. A survey of 26 anatomical sites indicates that, in humans, melanopsin is expressed only in the eye. In situ hybridization histochemistry shows that melanopsin expression is restricted to cells within the ganglion and amacrine cell layers of the primate and murine retinas. Notably, expression is not observed in retinal photoreceptor cells, the opsin-containing cells of the outer retina that initiate vision. The unique inner retinal localization of melanopsin suggests that it is not involved in image formation but rather may mediate nonvisual photoreceptive tasks, such as the regulation of circadian rhythms and the acute suppression of pineal melatonin. The anatomical distribution of melanopsin-positive retinal cells is similar to the pattern of cells known to project from the retina to the suprachiasmatic nuclei of the hypothalamus, a primary circadian pacemaker.

1,183 citations

Journal ArticleDOI
TL;DR: The retinae of monkey and man have been studied by electron microscopy to identify cell types, their processes and synaptic contacts, and a model of the retina, based on the described anatomy, is presented and correlated with ganglion cell physiology.
Abstract: The retinae of monkey and man have been studied by electron microscopy to identify cell types, their processes and synaptic contacts. In the inner plexiform layer, the morphological characteristics of the three types of cells (bipolar, ganglion and amacrine) are described and seven synaptic relationships are identified. The bipolar terminals contain ribbons at points of synaptic contact, and, at these points, there are typically two postsynaptic processes, one a ganglion cell dendrite, the other an amacrine cell process. This synaptic arrangement is here termed a dyad. The amacrine cell processes themselves make synaptic contacts with ganglion cell dendrites and somata, other amacrine cell processes, and, most frequently, with the bipolar cell terminals. Often, the amacrine-bipolar contact is adjacent to a bipolar-amacrine junction, forming a reciprocal synaptic arrangement between the bipolar and the amacrine. In the more peripheral retina, large bipolar cell terminals (probably of rod bipolars) are occasionally observed adjacent to the perikarya of the ganglion cells. At these junctions, areas of fusion between the plasma membranes are seen, suggesting that such axosomatic junctions could be electrical. In the outer plexiform layer, synapses have been identified only in the receptor cell bases where receptor cells contact bipolar and horizontal cell processes. Synaptic contacts of the horizontal cells have not been clearly identified, but their strategic terminations in the receptor cell ending are described and interpreted as possibly synaptic. A model of the retina, based on the described anatomy, is presented and correlated with ganglion cell physiology.

963 citations

Journal ArticleDOI
18 Oct 2012-Neuron
TL;DR: At least half of the encodings sent to the brain (ganglion cell response selectivities) remain to be discovered, indicating that diversity of the retina's outputs has yet to be incorporated into the understanding of higher visual function.

834 citations

Journal ArticleDOI
TL;DR: The experimental evidence in support of dopamine's role as a chemical messenger for light adaptation and its multiple trophic roles in retinal function related to circadian rhythmicity, cell survival and eye growth are summarized.
Abstract: This review summarizes the experimental evidence in support of dopamine's role as a chemical messenger for light adaptation. Dopamine is released by a unique set of amacrine cells and activates D1 and D2 dopamine receptors distributed throughout the retina. Multiple dopamine-dependent physiological mechanisms result in an increased signal flow through cone circuits and a diminution of signal flow through rod circuits. Dopamine also has multiple trophic roles in retinal function related to circadian rhythmicity, cell survival and eye growth. In a reciprocal way, the health of the dopaminergic neurons depends on their receiving light-driven synaptic inputs. Dopamine neurons appear early in development, become functional in advance of the animal's onset of vision and begin to die in aging animals. Some diseases affecting photoreceptor function also diminish day/night differences in dopamine release and turnover. A reduction in retinal dopamine, as occurs in Parkinsonian patients, results in reduced visual contrast sensitivity.

708 citations

Journal ArticleDOI
TL;DR: No other morphological feature except stratification appears to be important in determining the sign of the response of these cells, and the nature of the rod and cone pathways to ganglion cells is discussed.
Abstract: 1. Ganglion cells in the retina of the cat were stained by intracellular dye injection after recording their responses to photic stimulation. 2. All cells encountered were divided into those giving on-responses and those producing off-responses, and the level of dendritic branching of these two groups was compared. Cells giving off-responses were found to branch high in the inner plexiform layer (IPL), near the amacrine cell bodies (sublamina a); those giving on-responses were found to branch lower in the inner plexiform layer (sublamina b). 3. Dye-injected cells varied widely in morphology and size, having cell bodies ranging in diameter from 8 to 32 micrometer and dendritic fields ranging from 25 to 490 micrometer in diameter; yet the sign of the response of each unit correlated only with the level of dendritic branching. Thus, no other morphological feature except stratification appears to be important in determining the sign of the response of these cells. 4. The stratification of ganglion cells into on- and off-layers parallels the distribution of the axon terminals of the flat and invaginating cone bipolars. Flat cone bipolars are in a position to contact off-center ganglion cells (in sublamina a) and invaginating cone bipolars are in a position to contact on-center ganglion cells (in sublamina b). 5. The rod and cone inputs to some cells were characterized by comparing their responses to deep red and blue rod-matched stimuli over a 2-log unit range starting at dark-adapted threshold. About half the cells appeared to be rod dominated under these conditions, whereas the others appeared to have mixed rod and cone signals. 6. The nature of the rod and cone pathways to ganglion cells is discussed.

639 citations


Network Information
Related Topics (5)
Neuron
22.5K papers, 1.3M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
81% related
NMDA receptor
24.2K papers, 1.3M citations
80% related
Synaptic plasticity
19.3K papers, 1.3M citations
80% related
Hippocampal formation
30.6K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202231
202125
202030
201924
201832