scispace - formally typeset
Search or ask a question
Topic

Amazon rainforest

About: Amazon rainforest is a research topic. Over the lifetime, 6257 publications have been published within this topic receiving 173357 citations. The topic is also known as: Amazonas & Amazonian rainforest.


Papers
More filters
Journal ArticleDOI
25 Jun 1993-Science
TL;DR: Although this rate of deforestation is lower than previous estimates, the effect on biological diversity is greater and tropical forest habitat, severely affected with respect to biological diversity, increased.
Abstract: Landsat satellite imagery covering the entire forested portion of the Brazilian Amazon Basin was used to measure, for 1978 and 1988, deforestation, fragmented forest, defined as areas less than 100 square kilometers surrounded by deforestation, and edge effects of 1 kilometer into forest from adjacent areas of deforestation. Tropical deforestation increased from 78,000 square kilometers in 1978 to 230,000 square kilometers in 1988 while tropical forest habitat, severely affected with respect to biological diversity, increased from 208,000 to 588,000 square kilometers. Although this rate of deforestation is lower than previous estimates, the effect on biological diversity is greater.

1,574 citations

Journal ArticleDOI
11 Jan 2008-Science
TL;DR: The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system, and this century, it faces the dual threats of deforestation and stress from climate change.
Abstract: The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.

1,552 citations

Journal ArticleDOI
06 Mar 2009-Science
TL;DR: Records from multiple long-term monitoring plots across Amazonia are used to assess forest responses to the intense 2005 drought, a possible analog of future events that may accelerate climate change through carbon losses and changed surface energy balances.
Abstract: Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

1,545 citations

Journal ArticleDOI
TL;DR: In the last 35 years, more than 50% of the Cerrado's approximately 2 million km 2 has been transformed into pasture and agricultural lands planted in cash crops as mentioned in this paper.
Abstract: The Cerrado is one of the world's biodiversity hotspots. In the last 35 years, more than 50% of its approximately 2 million km 2 has been transformed into pasture and agricultural lands planted in cash crops. The Cerrado has the richest flora among the world's savannas (>7000 species) and high levels of endemism. Species richness of birds, fishes, reptiles, amphibians, and insects is equally high, whereas mammal diversity is relatively low. Deforestation rates have been higher in the Cerrado than in the Amazon rainforest, and conservation efforts have been modest: only 2.2% of its area is under legal protection. Numerous animal and plant species are threatened with extinction, and an estimated 20% of threatened and endemic species do not occur in protected areas. Soil erosion, the degradation of the diverse Cerrado vegetation formations, and the spread of exotic grasses are widespread and major threats. The use of fire for clearing land and to encourage new growth for pasture has also caused damage, even though the Cerrado is a fire-adapted ecosystem. Ecosystem experiments and modeling show that change in land cover is altering the hydrology and affecting carbon stocks and fluxes. Cerrado agriculture is lucrative, and agricultural expansion is expected to continue, requiring improvements in and extension of the transportation infrastructure, which will affect not only the Cerrado but also the Amazon forest. Large-scale landscape modification and threats to numerous species have led to renewed interest from various sectors in promoting the conservation of the Cerrado, particularly through strengthening and enlarging the system of protected areas and improving farming practices and thus the livelihoods of local communities.

1,297 citations

Journal ArticleDOI
23 Mar 2006-Nature
TL;DR: It is reported that protected areas in the Amazon basin—the central feature of prevailing conservation approaches—are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation.
Abstract: Deforestation is continuing in the Amazon basin as the cattle and soy industries expand. The main conservation policy there involves ‘protected areas’: areas designated by national governments that are left undisturbed to allow natural vegetation to develop. But this alone may not protect the rainforest ecosystem from collapse. An new estimate of forest losses made using the SimAmazonia 1 computer model suggests that by 2050, agricultural expansion will eliminate two-thirds of the forest cover of five major watersheds and ten ecoregions. One in four mammalian species examined will lose 40% of their forest habitat. Although an improved network of protected areas could avoid up to a third of projected forest loss, forest conservation on private properties will be essential if the Amazon landscapes and watersheds are to be maintained. Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core1,2,3,4. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin—the central feature of prevailing conservation approaches5,6,7,8—are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 ± 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation3,4.

1,201 citations


Network Information
Related Topics (5)
Deforestation
13.8K papers, 492.8K citations
83% related
Indigenous
47.4K papers, 642.5K citations
77% related
Biodiversity
44.8K papers, 1.9M citations
76% related
Vegetation
49.2K papers, 1.4M citations
76% related
Ecosystem
25.4K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
20231,215
20222,793
2021410
2020417
2019381