scispace - formally typeset
Search or ask a question
Topic

Ames test

About: Ames test is a research topic. Over the lifetime, 3162 publications have been published within this topic receiving 79520 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The methods described include the standard plate test, the use and storage of the bacterial tester strains, preparation and use of the liver homogenates, and the methods of inducing the rats for elevated microsomal enzyme activity.
Abstract: We describe in this paper the general methods for using the Salmonella/microsome test as a mutagenesis screening system. The methods described include the standard plate test, the use and storage of the bacterial tester strains, preparation and use of the liver homogenates (S/sub 9/), and the methods of inducing the rats for elevated microsomal enzyme activity. The application of this test system to screening large numbers of compounds, and the interpretation of test results is also discussed.

7,323 citations

Journal ArticleDOI
TL;DR: Historical aspects of how the Ames test was developed and detailed procedures for performing the test, including the design and interpretation of results are provided, to determine the mutagenic potential of new chemicals and drugs.
Abstract: The Ames Salmonella/microsome mutagenicity assay (Salmonella test; Ames test) is a short-term bacterial reverse mutation assay specifically designed to detect a wide range of chemical substances that can produce genetic damage that leads to gene mutations. The test employs several histidine dependent Salmonella strains each carrying different mutations in various genes in the histidine operon. These mutations act as hot spots for mutagens that cause DNA damage via different mechanisms. When the Salmonella tester strains are grown on a minimal media agar plate containing a trace of histidine, only those bacteria that revert to histidine independence (his(+)) are able to form colonies. The number of spontaneously induced revertant colonies per plate is relatively constant. However, when a mutagen is added to the plate, the number of revertant colonies per plate is increased, usually in a dose-related manner. The Ames test is used world-wide as an initial screen to determine the mutagenic potential of new chemicals and drugs. The test is also used for submission of data to regulatory agencies for registration or acceptance of many chemicals, including drugs and biocides. International guidelines have been developed for use by corporations and testing laboratories to ensure uniformity of testing procedures. This review provides historical aspects of how the Ames was developed and detailed procedures for performing the test, including the design and interpretation of results.

1,831 citations

Journal ArticleDOI
TL;DR: A review of the literature yielded data on over 200 aromatic and heteroaromatic nitro compounds tested for mutagenicity in the Ames test and a quantitative structure-activity relationship (QSAR) has been derived for 188 congeners, showing that chemicals possessing three or more fused rings possess much greater mutagenic potency than compounds with one or two fused rings.
Abstract: A review of the literature yielded data on over 200 aromatic and heteroaromatic nitro compounds tested for mutagenicity in the Ames test using S. typhimurium TA98. From the data, a quantitative structure-activity relationship (QSAR) has been derived for 188 congeners. The main determinants of mutagenicity are the hydrophobicity (modeled by octanol/water partition coefficients) and the energies of the lowest unoccupied molecular orbitals calculated using the AM1 method. It is also shown that chemicals possessing three or more fused rings possess much greater mutagenic potency than compounds with one or two fused rings. Since the QSAR is based on a very wide range in structural variation, aromatic rings from benzene to coronene are included as well as many different types of heterocycles, it is a significant step toward a predictive toxicology of value in the design of less mutagenic bioactive compounds.

770 citations

Journal ArticleDOI
TL;DR: It was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen, and a relative predictivity (RP) measure is a useful tool to assess the carcinogenic risk from a positive genotoxicity signal.
Abstract: The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.

711 citations

Journal ArticleDOI
TL;DR: Salmonella/microsome tests (Ames tests) and chromosomal aberration tests in vitro using a Chinese hamster fibroblast cell line were carried out on 190 synthetic food additives and 52 food additives derived from natural sources, all of which are currently used in Japan.

634 citations


Network Information
Related Topics (5)
DNA damage
47K papers, 2.4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
DNA repair
41.5K papers, 2.4M citations
78% related
Lipid peroxidation
42.4K papers, 1.8M citations
78% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202286
202161
202048
201948
201860