scispace - formally typeset
Search or ask a question
Topic

Ammonia

About: Ammonia is a research topic. Over the lifetime, 16217 publications have been published within this topic receiving 271940 citations. The topic is also known as: NH3 & azane.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the reaction mechanism of ammonia decomposition to nitrogen and hydrogen over platinum loaded titanium oxide photocatalyst was investigated through various reaction tests, as well as ESR and FT-IR spectroscopies.
Abstract: The reaction mechanism of ammonia decomposition to nitrogen and hydrogen over platinum loaded titanium oxide photocatalyst was investigated through various reaction tests, as well as ESR and FT-IR spectroscopies. The photoformed hole on the titanium oxide oxidizes NH3 to form amide radical (•NH2) and proton. The amide radicals produce hydrazine (N2H4), and it can be further decomposed to form nitrogen and hydrogen. On the other hand, the photoformed electron migrates to platinum nanoparticles through the conduction band of the titanium oxide and reduces the proton to yield hydrogen. The metals with larger work function, such as platinum, can provide more effective cocatalysts. In this photocatalytic reaction system, water molecules were essential for the continuous reaction progress. An in situ FT-IR study clarified that water restricted the accumulation of inactive byproduct, ammonium ion (NH4+), on the titanium oxide surface.

110 citations

Journal ArticleDOI
TL;DR: This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering and shows that the instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate.
Abstract: Lack of accounting for proton uptake and secretion has confounded interpretation of the stoichiometry of photosynthetic growth of algae. This is also problematic for achieving growth of microalgae to high cell concentrations which is necessary to improve productivity and the economic feasibility of commercial-scale chemical production systems. Since microalgae are capable of consuming both nitrate and ammonium, this represents an opportunity to balance culture pH based on a nitrogen feeding strategy that does not utilize gas-phase CO2 buffering. Stoichiometry suggests that approximately 36 weight%N-NH4+ (balance nitrogen as NO3-) would minimize the proton imbalance and permit high-density photoautotrophic growth as it does in higher plant tissue culture. However, algal media almost exclusively utilize nitrate, and ammonium is often viewed as ‘toxic’ to algae. The microalgae Chlorella vulgaris and Chlamydomonas reinhardtii exclusively utilize ammonium when both ammonium and nitrate are provided during growth on excess CO2. The resulting proton imbalance from preferential ammonium utilization causes the pH to drop too low to sustain further growth when ammonium was only 9% of the total nitrogen (0.027 gN-NH4+/L). However, providing smaller amounts of ammonium sequentially in the presence of nitrate maintained the pH of a Chlorella vulgaris culture for improved growth on 0.3 gN/L to 5 gDW/L under 5% CO2 gas-phase supplementation. Bioreactor pH dynamics are shown to be predictable based on simple nitrogen assimilation as long as there is sufficient CO2 availability. This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering. The instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate. Despite the highly regulated array of nitrogen transporters, providing a nitrogen source with a balanced degree of reduction minimizes pH fluctuations. Understanding and accommodating the behavior of nitrogen utilization in microalgae is key to avoiding ‘culture crash’ and reliance on gas phase CO2 buffering, which becomes both ineffective and cost-prohibitive for commercial-scale algal culture.

110 citations

Journal ArticleDOI
TL;DR: Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven).

110 citations

Journal ArticleDOI
Shumei Gao1, Mingxing Zhao1, Chen Yang1, Meijuan Yu1, Wenquan Ruan1 
TL;DR: The results of high-throughput 16S rDNA sequencing showed that ammonia stress increased the relative abundance of Firmicutes bacteria and hydrogenotrophic methanogens but decreased the abundance of acetotrophic meethanogens, which was proposed to be an in situ response strategy for ammonia stress adaptation.

110 citations

Journal ArticleDOI
TL;DR: A model can be fitted from the experiments to predict the ammonia oxidation rate based on four main parameters: pH, current density, sulfate concentration and chloride concentration, and confirms that the optimal operating conditions are a high chloride concentration (7 gl(-1)), no sulfate and a high current density (1200 Am(-2).

110 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Adsorption
226.4K papers, 5.9M citations
85% related
Aqueous solution
189.5K papers, 3.4M citations
84% related
Hydrogen
132.2K papers, 2.5M citations
83% related
Amino acid
124.9K papers, 4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,701
20223,035
2021425
2020443
2019496
2018511