scispace - formally typeset
Search or ask a question
Topic

Amorphous silicon

About: Amorphous silicon is a research topic. Over the lifetime, 26777 publications have been published within this topic receiving 423234 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the recent advances in fundamental science of transparent amorphous oxide semiconductors and their application in thin-film transistors (TFTs) and placed emphasis on the view that high ionicity in chemical bonding and large spherical spread of unoccupied metal s orbitals in pblock metal oxides lead to the realization of electronic structures that are advantageous for n-channel TFT applications.
Abstract: Transparent amorphous oxide semiconductors have unique electron transport properties, such as large electron mobility (10–50 cm2/Vs) and the absence of a Hall voltage sign anomaly, that are not seen in conventional amorphous semiconductors. This class of materials has been attracting much attention as a channel layer in thin-film transistors (TFTs) utilizing the above features along with the processing advantage that thin films can be deposited at low temperatures by conventional sputtering methods. The primary driving force for this trend is a rapidly emerging demand for backplane TFTs that can drive the next generation of flat-panel displays. This article reviews the recent advances in fundamental science of these materials and their TFT applications. Emphasis is placed on the view that high ionicity in chemical bonding and large spherical spread of unoccupied metal s orbitals in p-block metal oxides lead to the realization of electronic structures that are advantageous for n-channel TFT applications. Amorphous oxide semiconductors are compared with conventional hydrogenated amorphous silicon, which is used widely as the channel material for backplane TFTs in current liquid-crystal displays.

759 citations

Journal ArticleDOI
TL;DR: In this paper, the local atomic structure of silicon suboxide (SiOx, x < 2) thin films using infrared (IR) spectroscopy was studied using PECVD of silane (SiH4) and nitrous oxide (N2O) mixtures, which were then diluted with He.
Abstract: We have studied the local atomic structure of silicon suboxide (SiOx, x<2) thin films using infrared (IR) spectroscopy. The films were prepared by plasma enhanced chemical vapor deposition (PECVD) of silane (SiH4) and nitrous oxide (N2O) mixtures, which were then diluted with He. The IR spectra were found to vary significantly with the degree of He dilution. Films grown with no He showed SiN, NH, and SiH bonding groups in addition to the three characteristic vibrations of the Si–O–Si linkage. The addition of He reduced the strength of the SiN, NH, and SiH absorption bands, and resulted in systematic increases in the frequency of the Si–O–Si asymmetric stretching vibration. The frequency of this Si–O–Si stretching vibration scales linearly with the oxygen concentration from approximately 940 cm−1 in oxygen doped amorphous silicon to 1075 cm−1 in stoichiometric noncrystalline SiO2. A deposition temperature of 350 °C and a He dilution of 50% gave a film composition close to SiO1.9. We propose a model for the...

738 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the use of hydrogenated amorphous silicon (a-Si:H) and hydrogenated micro-crystalline silicon (μc-Si-H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen.
Abstract: This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p–i–n-type solar cells, as fabricated so far, are compared in their key parameters (Jsc, FF, Voc) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the μc-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of other PV technologies. Copyright © 2004 John Wiley & Sons, Ltd.

718 citations

Journal ArticleDOI
TL;DR: In this paper, states in the gap in amorphous silicon and chalcogenides and their effect on photoconductivity, luminescence and drift mobility are examined.
Abstract: The paper examines states in the gap in amorphous silicon and chalcogenides and their effect on photoconductivity, luminescence and drift mobility. It is supposed that carriers in an ‘ideal’ glassy semiconductor without defects would move by hopping at the band edge at low temperatures and by excitation to a mobility edge at high temperatures, and that the carriers do not form polarons; the results of Spear and co-workers (e.g. Spear 1974 a) for glow-discharge-deposited silicon and of Nagels, Callearts and Denayer (1974) for quenched As2Te3 containing silicon are considered. The effectively zero value of the Hall coefficient in the hopping regime is discussed. States in the gap are supposed to be due to dangling bonds which may form pairs at divacancies; if the concentration is high, these may have a predominating effect on the conductivity and in this case polaron-type hopping could occur, both for chalcogenides and for silicon. For the chalcogenides (in contrast to silicon), it is proposed, ada...

695 citations

Journal ArticleDOI
TL;DR: In situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres, revealing that the first lithiation occurs via a two-phase mechanism, contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation.
Abstract: To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li–Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, the experiments reveal that the first lithiation occurs via a two-phase mechanism, which is contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation. On the basis of kinetics measurements, this behavior is suggested to be due to the rate-limiting effect of Si–Si bond breaking. In addition, the results show that amorphous Si has more favorable kinetics and fracture behavior when reacting with Li than does crystalline Si, making it advantageous to use in battery electrodes. Amorphous spheres up to 870 nm in diameter do not fracture upon lithiation; this is much...

681 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Silicon
196K papers, 3M citations
93% related
Band gap
86.8K papers, 2.2M citations
93% related
Amorphous solid
117K papers, 2.2M citations
89% related
Dielectric
169.7K papers, 2.7M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023118
2022214
2021245
2020422
2019526
2018571