Topic
Amylase
About: Amylase is a(n) research topic. Over the lifetime, 14164 publication(s) have been published within this topic receiving 296069 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available and are also of interest in rumen fermentation.
Abstract: There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme 1 1The heat stable amylase, formerly Number 5426, has been changed by Sigma as of July 1991. The original procedure required .2 ml of this enzyme. The replacement. Number A3306, is four times stronger, and 50 μl are used per sample. has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and β-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
20,607 citations
Journal Article•
[...]
TL;DR: Values for RS are similar to the amount of starch escaping digestion in the small intestine of ileostomates, and are a guide to the amounts of starch likely to enter the colon for fermentation.
Abstract: For nutritional purposes, starch in foods may be classified into rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS). RS may be further divided into three categories according to the reason for resistance to digestion. A method is reported for the measurement of total starch, RDS, SDS, RS and three RS fractions in starchy foods, using controlled enzymic hydrolysis with pancreatin and amyloglucosidase. The released glucose is measured by colorimetry, using a glucose oxidase kit. Values for RDS and SDS in foods obtained by the method reflect the rate of starch digestion in vivo. Values for RS are similar to the amounts of starch escaping digestion in the small intestine of ileostomates, and are a guide to the amounts of starch likely to enter the colon for fermentation. Results are given for a number of starchy foods.
2,677 citations
[...]
TL;DR: It is found that copy number of the salivary amylase gene (AMY1) is correlated positively with salivaries protein level and that individuals from populations with high-starch diets have, on average, more AMY1 copies than those with traditionally low-st starch diets.
Abstract: Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis. We found that copy number of the salivary amylase gene (AMY1) is correlated positively with salivary amylase protein level and that individuals from populations with high-starch diets have, on average, more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the extent of AMY1 copy number differentiation is highly unusual. This example of positive selection on a copy number-variable gene is, to our knowledge, one of the first discovered in the human genome. Higher AMY1 copy numbers and protein levels probably improve the digestion of starchy foods and may buffer against the fitness-reducing effects of intestinal disease.
1,154 citations
[...]
TL;DR: The alpha-amylase family of glycosyl hydrolases as discussed by the authors is one of the most common types of enzymes used in industrial applications and has a (beta/alpha) 8-barrel structure with conserved amino acid residues.
Abstract: Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.
1,013 citations
[...]
TL;DR: In terms of overall ME yield, grain starch is best used when it is fermented in the rumen, however, close coordination of protein and starch supply to the duodenum may improve capture of starch in the form of glucose.
Abstract: Starch is the major energy component of grains. Wheat contains 77% of DM as starch, corn and sorghum contain 72%, and barley and oats contain 57 to 58%. In vitro systems have provided valuable data on kinetic aspects of starch digestion. Molecular biological techniques have provided a clearer picture of the ruminal microbial milieu. Proportions of starch fermented in the rumen can be predicted satisfactorily for a variety of grains and processing methods. Compared with dry rolling, steam processing (flaking or rolling) increases ruminal digestibility of starch (percentage of intake) from 52 to 78% for sorghum, from 75 to 85% for corn, and six percentage units or less for other grains. Recent research provides new insight into pancreatic function and intestinal glucose transport systems. The capacity to digest starch in the intestine ranges from 45 to 85% of starch entering the duodenum, with that capacity apparently limited by the supply of pancreatic amylase. There is evidence that amylase secretion may be enhanced by increasing duodenal entry of protein. Capacity for active transport of glucose across of gut wall does not seem to limit the amount of starch digested that is absorbed as glucose. For ruminants eating medium- to high-concentrate diets, about 30% of their total glucose need comes from glucose absorption, 50% from organic acid absorption (substrates for hepatic gluconeogenesis), and 20% from other sources. When glucose absorption from the gut increases, ruminants generally adjust (decrease) gluconeogenesis to meet their need; that need is directly linked to DE intake. In terms of overall ME yield, grain starch is best used when it is fermented in the rumen. However, close coordination of protein and starch supply to the duodenum may improve capture of starch in the form of glucose.
712 citations