scispace - formally typeset
Search or ask a question
Topic

Amylase

About: Amylase is a research topic. Over the lifetime, 14164 publications have been published within this topic receiving 296069 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The study identified the innate enzymatic potential (amylase) of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme).
Abstract: The study identified the innate enzymatic potential (amylase) of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme). Comparative polyhydroxyalkanoate (PHA) production by B. thuringiensis IAM 12077 in biphasic growth conditions using glucose and starch showed appreciable levels of growth (5.7 and 6.8 g/L) and PHA production (58.5 and 41.5%) with a PHA yield of 3.3 and 2.8 g/L, respectively. Nitrogen deficiency supported maximum PHA yield (2.46 g/L) and accumulation (53.3%). Maximum growth (3.6 g/L), PHB yield (2.6 g/L) and PHA accumulation (72.8%) was obtained with C:N ratio of 8:1 using starch as the carbon source (10 g/L). Nine substrates (agro and food wastes) viz. rice husk, wheat bran, ragi husk, jowar husk, jackfruit seed powder, mango peel, potato peel, bagasse and straw were subjected to two treatments- acid hydrolysis and hydrolysis by innate enzymes, and the reducing sugars released thereby were utilized for polymer production. All the substrates tested supported comparable PHB production with acid hydrolysis (0.96 g/L-8.03 g/L) and enzyme hydrolysis (0.96 g/L -5.16 g/L). Mango peel yielded the highest PHB (4.03 g/L; 51.3%), followed by jackfruit seed powder (3.93 g/L; 29.32%). Varied levels of amylase activity (0.25U-10U) in all the substrates suggested the enzymatic hydrolysis of agrowastes.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the accumulated starch in the green alga Chlamydomonas reinhardtii was used as the sole substrate for fermentative hydrogen (H2) production by the hyperthermophilic eubacterium Thermotoga neapolitana.

90 citations

Journal ArticleDOI
TL;DR: Understanding the relationships between molecular structure, physical functionality and physiological functionality of dietary fibres should enable the food industry to deliver more fibre-enriched functional food products to consumers, especially for Glycaemia control.

90 citations

Journal ArticleDOI
TL;DR: The results suggest that the organic components of A. nodosum extract induce amylase activity independent of GA3 and might act in concert with GA-dependent amyl enzyme production leading to enhanced germination and seedling vigor in barley.
Abstract: Extracts of the brown seaweed Ascophyllum nodosum have been used as a biostimulant to promote growth and productivity in a number of agricultural production systems. Although the extracts have been shown to improve seedling emergence and vigor in a variety of plants, including barley, the mechanism(s) of this growth-promoting effect is(are) largely unknown. In our study, A. nodosum extract induced amylase activity in barley seed-halves; a significant difference in amylase activity was observed in seeds without an embryo. The addition of activated charcoal to the treatment media negated the bioactivity of the extracts suggesting the organic nature of bioactive compounds in A. nodosum extracts. The extracts induced amylase activity in a gibberellic acid (GA)-deficient barley mutant (grd2). LC-MS-MS analysis failed to detect the presence of GA3 in the extracts. ABA supplementation of the medium caused a significant reduction of amylase activity in GA-treated seeds compared with those treated with the A. nodosum extract. Taken together, our results suggest that the organic components of A. nodosum extract induce amylase activity independent of GA3 and might act in concert with GA-dependent amylase production leading to enhanced germination and seedling vigor in barley. Being derived from a renewable resource, the bioactive compounds from A. nodosum could be used to improve crop productivity in sustainable agricultural systems.

90 citations

Journal ArticleDOI
TL;DR: A comparison of various properties of the amylase preparations showed that the only significant difference in the preparations produced at 35 °C and those produced at 55 °C was in the thermal stability at 90 °C.

90 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
82% related
Fermentation
68.8K papers, 1.2M citations
81% related
Amino acid
124.9K papers, 4M citations
80% related
Antioxidant
37.9K papers, 1.7M citations
80% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023460
2022976
2021308
2020347
2019328