scispace - formally typeset
Search or ask a question
Topic

Amylase

About: Amylase is a research topic. Over the lifetime, 14164 publications have been published within this topic receiving 296069 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A good arrangement of rapid methods for screening a high number of bacteria: a series of beneficial tests that are used together for the first time on chickens, and not any other animals are provided.

135 citations

Journal ArticleDOI
TL;DR: Thermostability assays in conjunction with IEF and molecular mapping were used to identify three beta-amylase alleles in cultivated barley and an additional allele in an accession of wild barley, suggesting that increased thermostability results in more efficient starch degradation.

134 citations

Journal ArticleDOI
TL;DR: P pH in AM is in good agreement with the optimal pH of amyl enzyme, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low.
Abstract: Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with Mr 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0–7.2 in AM, 6.4–7.6 in the first and 8.8–9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases. Arch. Insect Biochem. Physiol. 48:206–216, 2001. © 2001 Wiley-Liss, Inc.

134 citations

Journal ArticleDOI
TL;DR: The present review assesses the potential of the Phaseolus vulgaris α-amylase inhibitor isoform 1 (α-AI1) starch blockers as a widely used remedy against obesity and diabetes and the need for research into their potential anti-colorectal cancer effect is discussed.
Abstract: The present review assesses the potential of the Phaseolus vulgaris α-amylase inhibitor isoform 1 (α-AI1) starch blockers as a widely used remedy against obesity and diabetes. Consumption of the α-amylase inhibitor causes marginal intraluminal α-amylase activity facilitated by the inhibitor's appropriate structural, physico-chemical and functional properties. As a result there is decreased postprandial plasma hyperglycaemia and insulin levels, increased resistance of starch to digestion and increased activity of colorectal bacteria. The efficacy and safety of the amylase inhibitor extracts, however, depend on the processing and extraction techniques used. The extracts are potential ingredients in foods for increased carbohydrate tolerance in diabetics, decreased energy intake for reducing obesity and for increased resistant starch. Research developments in the distribution and biosynthesis of the α-amylase inhibitor, relevant physico-chemical properties, the molecular starch-blocking mechanism, anti-obesity and anti-diabetes effects, safety of extracts and the need for research into their potential anti-colorectal cancer effect are discussed.

134 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
82% related
Fermentation
68.8K papers, 1.2M citations
81% related
Amino acid
124.9K papers, 4M citations
80% related
Antioxidant
37.9K papers, 1.7M citations
80% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023460
2022976
2021308
2020347
2019328