Topic
Amyloid precursor protein
About: Amyloid precursor protein is a research topic. Over the lifetime, 10748 publications have been published within this topic receiving 725249 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.
11,721 citations
[...]
TL;DR: An apparently full-length complementary DNA clone coding for the A4 polypeptide is isolated and sequenced and suggests that the cerebral amyloid deposited in Alzheimer's disease and aged Down's syndrome is caused by aberrant catabolism of a cell-surface receptor.
Abstract: Alzheimer's disease is characterized by a widespread functional disturbance of the human brain. Fibrillar amyloid proteins are deposited inside neurons as neurofibrillary tangles and extracellularly as amyloid plaque cores and in blood vessels. The major protein subunit (A4) of the amyloid fibril of tangles, plaques and blood vessel deposits is an insoluble, highly aggregating small polypeptide of relative molecular mass 4,500. The same polypeptide is also deposited in the brains of aged individuals with trisomy 21 (Down's syndrome). We have argued previously that the A4 protein is of neuronal origin and is the cleavage product of a larger precursor protein. To identify this precursor, we have now isolated and sequenced an apparently full-length complementary DNA clone coding for the A4 polypeptide. The predicted precursor consists of 695 residues and contains features characteristic of glycosylated cell-surface receptors. This sequence, together with the localization of its gene on chromosome 21, suggests that the cerebral amyloid deposited in Alzheimer's disease and aged Down's syndrome is caused by aberrant catabolism of a cell-surface receptor.
4,498 citations
[...]
TL;DR: Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer β-amyloid (Aβ) precursor protein containing a Lys670 → Asn, Met671 → Leu mutation had normal learning and memory but showed impairment by 9 to 10 months of age.
Abstract: Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer beta-amyloid (Abeta) precursor protein containing a Lys670 --> Asn, Met671 --> Leu mutation had normal learning and memory in spatial reference and alternation tasks at 3 months of age but showed impairment by 9 to 10 months of age. A fivefold increase in Abeta(1-40) and a 14-fold increase in Abeta(1-42/43) accompanied the appearance of these behavioral deficits. Numerous Abeta plaques that stained with Congo red dye were present in cortical and limbic structures of mice with elevated amounts of Abeta. The correlative appearance of behavioral, biochemical, and pathological abnormalities reminiscent of Alzheimer's disease in these transgenic mice suggests new opportunities for exploring the pathophysiology and neurobiology of this disease.
4,165 citations
[...]
21 Feb 1991
TL;DR: It is demonstrated that in this kindred, which shows linkage to chromosome 21 markers, there is a point mutation in the APP gene that causes an amino-acid substitution close to the carboxy terminus of the β-amyloid peptide.
4,055 citations
[...]
TL;DR: Overexpression of a transmembrane aspartic protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta- secretase positions.
Abstract: Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.
3,688 citations