scispace - formally typeset
Search or ask a question

Showing papers on "Amyotrophic lateral sclerosis published in 2017"



Journal ArticleDOI
TL;DR: These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD), which is a re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum.
Abstract: This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised –– including deficits in social cognition and language – but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neu...

540 citations


Journal ArticleDOI
16 Aug 2017-Neuron
TL;DR: The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS-FTD pathogenesis.

455 citations


Journal ArticleDOI
12 Apr 2017-Nature
TL;DR: This work used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy, and presented a promising alternative therapeutic strategy for ALS that involves targeting ataxIn-2.
Abstract: Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.

389 citations


Journal ArticleDOI
TL;DR: The alterations in mitochondrial parameters in ALS are reviewed and the common pathways to dysfunction are examined to examine the common routes to dysfunction.

325 citations


Journal ArticleDOI
TL;DR: Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.
Abstract: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)-mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs.Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.

247 citations


Journal ArticleDOI
TL;DR: The pattern of lower MN degeneration in ALS is discussed and the current literature on OMN resistance in ALS and differential spinal MN vulnerability is reviewed, to reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS.
Abstract: In the fatal disease—amyotrophic lateral sclerosis (ALS)—upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.

230 citations


Journal ArticleDOI
TL;DR: It is observed that many gene variants associated with ALS have effect sizes between those of mutations that greatly increase risk and those of common variants that have a small effect on risk, and this observation is combined with insights from next-generation sequencing to explore the implications for genetic counselling.
Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease predominantly affecting upper and lower motor neurons. The disease leads to relentlessly progressive weakness of voluntary muscles, with death typically resulting from diaphragmatic failure within 2-5 years. Since the discovery of mutations in SOD1, which account for ∼2% of ALS cases, increasing efforts have been made to understand the genetic component of ALS risk, with the expectation that this insight will not only aid diagnosis and classification, but also guide personalized treatment and reveal the mechanisms that cause motor neuron death. In this Review, we outline previous and current efforts to characterize genes that are associated with ALS, describe current knowledge about the genetic architecture of ALS - including the relevance of family history - and the probable nature of future gene discoveries, and explore how our understanding of ALS genetics affects present and future clinical decisions. We observe that many gene variants associated with ALS have effect sizes between those of mutations that greatly increase risk and those of common variants that have a small effect on risk, and combine this observation with insights from next-generation sequencing to explore the implications for genetic counselling.

218 citations


Journal ArticleDOI
TL;DR: The role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS are focused on.
Abstract: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS.

213 citations


Journal ArticleDOI
TL;DR: It is concluded that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the ANXA11 gene in 13 individuals. The p.D40G mutation was absent from 70,000 control whole-exome sequences. This mutation segregated with disease in two kindreds and was present in another two unrelated cases (P = 0.0102), and all mutation carriers shared a common founder haplotype. Annexin A11–positive protein aggregates were abundant in spinal cord motor neurons and hippocampal neuronal axons in an ALS patient carrying the p.D40G mutation. Transfected human embryonic kidney cells expressing ANXA11 with the p.D40G mutation and other N-terminal mutations showed altered binding to calcyclin, and the p.R235Q mutant protein formed insoluble aggregates. We conclude that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.

199 citations


Journal ArticleDOI
TL;DR: The pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease are summarized.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects upper motor neurons comprising the corticospinal tract and lower motor neurons arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining motor neurons in ALS patients and animal models of the disease.

Journal ArticleDOI
11 Oct 2017-Neuron
TL;DR: Transport through the nuclear pore complex is reviewed, pointing out vulnerabilities that may underlie ALS and potentially contribute to this and other age-related neurodegenerative diseases.

Journal ArticleDOI
01 Dec 2017-Brain
TL;DR: In this paper, the authors explored clinicopathological correlations in a large bvFTD cohort and used a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging and neuropsychological data.
Abstract: Accurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data.

Journal ArticleDOI
TL;DR: Analysis of ALS patient iPSC-derived motor neurons indicates that Src/c-Abl inhibitors may have potential for treating ALS, and a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout shows that inhibitors of Src or c-ABL kinases promoted autophagy and rescued ALS motor neurons from degeneration.
Abstract: Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (SOD1) Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein (TDP-43) or repeat expansions in C9orf72 Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS

Journal ArticleDOI
TL;DR: The findings from this study highlight the complex role of the gut microbiome and intestinal epithelium in the progression of ALS and present butyrate as a potential therapeutic reagent for restoring ALS-related dysbiosis.

Journal ArticleDOI
TL;DR: The extent to which these associations may be causal is discussed, with further research recommended to strengthen the evidence on which determinations of causality may be based.
Abstract: Although amyotrophic lateral sclerosis (ALS) was identified as a neurological condition 150 years ago, risk factors related to the onset and progression of ALS remain largely unknown. Monogenic mutations in over 30 genes are associated with about 10% of ALS cases. The age at onset of ALS and disease types has been found to influence ALS progression. The present study was designed to identify additional putative risk factors associated with the onset and progression of ALS using systematic review and meta-analysis of observational studies. Risk factors that may be associated with ALS include: 1) genetic mutations, including the intermediate CAG repeat expansion in ATXN2; 2) previous exposure to heavy metals such as lead and mercury; 3) previous exposure to organic chemicals, such as pesticides and solvents; 4) history of electric shock; 5) history of physical trauma/injury (including head trauma/injury); 6) smoking (a weak risk factor for ALS in women); and 6) other risk factors, such as participating in professional sports, lower body mass index, lower educational attainment, or occupations requiring repetitive/strenuous work, military service, exposure to Beta-N-methylamino-l-alanin and viral infections. Risk factors that may be associated with ALS progression rate include: 1) nutritional status, including vitamin D deficiency; 2) comorbidities; 3) ethnicity and genetic factors; 4) lack of supportive care; and 4) smoking. The extent to which these associations may be causal is discussed, with further research recommended to strengthen the evidence on which determinations of causality may be based.

Journal ArticleDOI
TL;DR: The different model systems used to study ALS are reviewed and how they have contributed to the current understanding of the etiology and pathology of this neurodegenerative disease are discussed.
Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects the motor system and presents with progressive muscle weakness. Most patients survive for only 2-5 years after disease onset, often due to failure of the respiratory muscles. ALS is a familial disease in ∼10% of patients, with the remaining 90% developing sporadic ALS. Over the past decade, major advances have been made in our understanding of the genetics and neuropathology of ALS. To date, around 20 genes are associated with ALS, with the most common causes of typical ALS associated with mutations in SOD1 , TARDBP , FUS and C9orf72 . Advances in our understanding of the genetic basis of ALS have led to the creation of different models of this disease. The molecular pathways that have emerged from these systems are more heterogeneous than previously anticipated, ranging from protein aggregation and defects in multiple key cellular processes in neurons, to dysfunction of surrounding non-neuronal cells. Here, we review the different model systems used to study ALS and discuss how they have contributed to our current knowledge of ALS disease mechanisms. A better understanding of emerging disease pathways, the detrimental effects of the various gene mutations and the causes underlying motor neuron denegation in sporadic ALS will accelerate progress in the development of novel treatments.

Journal ArticleDOI
TL;DR: It is concluded that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression.
Abstract: Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression.

Journal ArticleDOI
TL;DR: Intensive studies reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.
Abstract: Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 . As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS‐FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre‐mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.

Journal ArticleDOI
TL;DR: Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons, which could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia.
Abstract: The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia.

Journal ArticleDOI
02 Nov 2017-Cell
TL;DR: It took 22 years after the FDA approval of the anti-excitotoxic drug Riluzole before another drug was found to be effective in altering ALS progression: theAnti-oxidant Edaravone.

Journal ArticleDOI
TL;DR: The possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration is explored.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.

Journal ArticleDOI
TL;DR: It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present, and more complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases.
Abstract: Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.

Journal ArticleDOI
TL;DR: The role of NFL as a biomarker in ALS is confirmed, and Elevation in NFL levels in patients with upper motor neuron involvement and FTD might reflect the corticospinal tract degeneration.
Abstract: Importance A clearer definition of the role of neurofilament light chain (NFL) as a biomarker in amyotrophic lateral sclerosis (ALS) is needed. Objectives To assess the ability of NFL to serve as a diagnostic biomarker in ALS and the prognostic value of cerebrospinal fluid NFL in patients with ALS. Design, Setting, and Participants In this single-center, retrospective, longitudinal study, disease progression was assessed by the ALS Functional Rating Score–Revised and the ALS Milano-Torino Staging system at baseline and 6, 12, 24, and 36 months. Cerebrospinal fluid samples were obtained from 176 patients admitted to the Department of Neurosciences of the University of Padua, Padova, Italy, from January 1, 2010, through February 29, 2016. Patients with ALS underwent ambulatory follow-up at the same department. Main Outcomes and Measures Levels of NFL. Results The study included 94 patients with ALS (64 men [36.4%] and 30 women [17.0%]; median age, 62.5 years), 20 patients with frontotemporal dementia (FTD) (8 men [4.5%] and 12 women [6.8%]; median age, 65 years), 18 patients with motor neuropathies (14 men [8.0%] and 4 women [2.3%]; median age, 63 years), and 44 controls (24 men [13.6%] and 20 women [11.4%]; median age, 54 years). Log-transformed NFL (log[NFL]) concentrations were higher in the ALS and FTD groups compared with the motor neuropathies and control groups (hazard ratio [HR], 2.45; 95% CI, 1.66-3.61; P P = .41), and upper motor neuron dominant ALS (HR, 0.12; 95% CI, 0.02-0.61; P = .01) had higher levels of NFL than did those with flail arm or leg syndrome (HR, 0.28; 95% CI, 0.08-0.10; P = .049) and progressive muscular atrophy (HR, 0.17; 95% CI, 0.22-1.36; P = .10). There was an inverse correlation between log[NFL] concentration and overall survival (HR, 2.45; 95% CI, 1.66-3.61; P Conclusions and Relevance This study confirms the role of NFL as a biomarker in ALS. Elevation in NFL levels in patients with upper motor neuron involvement and FTD might reflect the corticospinal tract degeneration. Low NFL levels in patients with lower motor neuron signs might be a prognostic indicator of milder phenotypes of disease.

Journal ArticleDOI
TL;DR: The pathogenic mechanism(s) in ALS remain unknown, but active propagation of the pathology neuroanatomically is likely a primary component.
Abstract: Amyotrophic lateral sclerosis (ALS) is primarily characterized by progressive loss of motor neurons, although there is marked phenotypic heterogeneity between cases. Typical, or "classical," ALS is associated with simultaneous upper motor neuron (UMN) and lower motor neuron (LMN) involvement at disease onset, whereas atypical forms, such as primary lateral sclerosis and progressive muscular atrophy, have early and predominant involvement in the UMN and LMN, respectively. The varying phenotypes can be so distinctive that they would seem to have differing biology. Because the same phenotypes can have multiple causes, including different gene mutations, there may be multiple molecular mechanisms causing ALS, implying that the disease is a syndrome. Conversely, multiple phenotypes can be caused by a single gene mutation; thus, a single molecular mechanism could be compatible with clinical heterogeneity. The pathogenic mechanism(s) in ALS remain unknown, but active propagation of the pathology neuroanatomically is likely a primary component.

Journal ArticleDOI
TL;DR: The potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations is illustrated.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations.

Journal ArticleDOI
TL;DR: The results demonstrate that the intrathecal application of BM-MSCs in ALS patients is a safe procedure and that it can slow down progression of the disease.

Journal ArticleDOI
TL;DR: The data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients.
Abstract: Importance Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B , IL8 , FOSB , CXCL1 , and CXCL2 , were confirmed by quantitative reverse transcription polymerase chain reaction ( IL8 , mean [SE], 1.00 [0.18]; P = .002; FOSB , 1.00 [0.21]; P = .009; CXCL1 , 1.00 [0.14]; P = .002; and CXCL2 , 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes from rapidly progressing patients had more proinflammatory DEGs than monocytes from slowly progressing patients. Conclusions and Relevance Our data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients. This increased inflammatory response of peripheral immune cells may provide a potential target for disease-modifying therapy in patients with ALS.

Journal ArticleDOI
TL;DR: It is possible therefore that FTLD is a reflection of dysfunction within lysosomal/proteasomal systems resulting in failure to remove potentially neurotoxic aggregates, which ultimately overwhelm capacity to function.
Abstract: Frontotemporal Lobar Degeneration (FTLD) is a clinically, pathologically and genetically heterogeneous group of disorders that affect principally the frontal and temporal lobes of the brain. There are three major associated clinical syndromes, behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SD) and progressive non-fluent aphasia (PNFA); three principal histologies, involving tau, TDP-43 and FUS proteins; and mutations in three major genes, MAPT, GRN and C9orf72, along with several other less common gene mutations. All three clinical syndromes can exist separately or in combination with Amyotrophic Lateral Sclerosis (ALS). SD is exclusively a TDP-43 proteinopathy, and PNFA may be so, with both showing tight clinical, histological and genetic inter-relationships. bvFTD is more of a challenge with overlapping histological and genetic features, involvement of any of the three aggregating proteins, and changes in any of the three major genes. However, when ALS is present, all cases show a clear histological phenotype with TDP-43 aggregated proteins, and familial forms are associated with expansions in C9orf72. TDP-43 and FUS are nuclear carrier proteins involved in the regulation of RNA metabolism, whereas tau protein - the product of MAPT - is responsible for the assembly/disassembly of microtubules, which are vital for intracellular transport. Mutations in TDP-43 and FUS genes are linked to clinical ALS rather than FTLD (with or without ALS), suggesting that clinical ALS may be a disorder of RNA metabolism. Conversely, the protein products of GRN and C9orf72, along with those of the other minor genes, appear to form part of the cellular protein degradation machinery. It is possible therefore that FTLD is a reflection of dysfunction within lysosomal/proteasomal systems resulting in failure to remove potentially neurotoxic (TDP-43 and tau) aggregates, which ultimately overwhelm capacity to function. Spread of aggregates along distinct pathways may account for the different clinical phenotypes, and patterns of progression of disease.

Journal ArticleDOI
TL;DR: The contribution of autophagy dysfunction in various in vitro and in vivo models of ALS is discussed and the crosstalk between Autophagy and other cellular stresses implicated in ALS pathogenesis is examined and the therapeutic implications of regulating autophile in ALS are examined.
Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in the disease neurons is the mislocalization of disease-associated protein accompanied by the formation of cytoplasmic aggregates of disease proteins as well as interacting proteins due to defective protein quality control. This apparent imbalance in the cellular protein homeostasis could be a crucial factor that causes motor neuron death in the later stages of life in patients. Autophagy is a major protein degradation pathway that is involved in the clearance of protein aggregates and damaged organelles. Abnormalities in autophagy have been observed in numerous neurodegenerative disorders, including ALS. In this review, we discuss the contribution of autophagy dysfunction in various in vitro and in vivo models of ALS. Furthermore, we look closely at the cross-talk between autophagy and other cellular stresses implicated in ALS pathogenesis and the therapeutic implications of regulating autophagy in ALS.