scispace - formally typeset
Search or ask a question

Showing papers on "Amyotrophic lateral sclerosis published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease, Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research.
Abstract: Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.

300 citations


Journal ArticleDOI
TL;DR: In this article, increased cerebrospinal fluid neurofilament light (NfL) is used as a marker of neurodegeneration in 13 neuro-degenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts.
Abstract: Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King’s College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.

141 citations


Posted ContentDOI
18 Mar 2021-medRxiv
TL;DR: All ALS associated signals combined reveal a role for perturbations in vesicle mediated transport and autophagy, and provide evidence for cell-autonomous disease initiation in glutamatergic neurons.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a life-time risk of 1 in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry GWAS in ALS including 29,612 ALS patients and 122,656 controls which identified 15 risk loci in ALS. When combined with 8,953 whole-genome sequenced individuals (6,538 ALS patients, 2,415 controls) and the largest cortex-derived eQTL dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, repeat expansions or regulatory effects. ALS associated risk loci were shared with multiple traits within the neurodegenerative spectrum, but with distinct enrichment patterns across brain regions and cell-types. Across environmental and life-style risk factors obtained from literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. All ALS associated signals combined reveal a role for perturbations in vesicle mediated transport and autophagy, and provide evidence for cell-autonomous disease initiation in glutamatergic neurons.

110 citations


Journal ArticleDOI
TL;DR: Evidence that lysosomal dysfunction, caused by genetic mutations or toxic-gain of function (i.e. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS is summarized.

74 citations


Journal ArticleDOI
TL;DR: This paper identified four specific, dominantly acting serine palmitoyltransferase (SPTLC1) variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS and designed small interfering RNAs that selectively target the SPTLC 1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.

67 citations


Journal ArticleDOI
TL;DR: In this article, the authors estimate the prevalence of amyotrophic lateral sclerosis (ALS) in the United States for 2016 using data from the National ALS Registry (Registry), established in 2009.
Abstract: Objective: To estimate the prevalence of amyotrophic lateral sclerosis (ALS) in the United States for 2016 using data from the National ALS Registry (Registry). Established in 2009, the Registry co...

59 citations


Journal ArticleDOI
TL;DR: A systematic review of existing quantitative susceptibility mapping (QSM) studies in neurodegenerative diseases is presented in this paper, where the authors identified 80 records by searching MEDLINE, Embase, Scopus, and PsycInfo databases.
Abstract: Iron has been increasingly implicated in the pathology of neurodegenerative diseases. In the past decade, development of the new magnetic resonance imaging technique, quantitative susceptibility mapping (QSM), has enabled for the more comprehensive investigation of iron distribution in the brain. The aim of this systematic review was to provide a synthesis of the findings from existing QSM studies in neurodegenerative diseases. We identified 80 records by searching MEDLINE, Embase, Scopus, and PsycInfo databases. The disorders investigated in these studies included Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Wilson's disease, Huntington's disease, Friedreich's ataxia, spinocerebellar ataxia, Fabry disease, myotonic dystrophy, pantothenate-kinase-associated neurodegeneration, and mitochondrial membrane protein-associated neurodegeneration. As a general pattern, QSM revealed increased magnetic susceptibility (suggestive of increased iron content) in the brain regions associated with the pathology of each disorder, such as the amygdala and caudate nucleus in Alzheimer's disease, the substantia nigra in Parkinson's disease, motor cortex in amyotrophic lateral sclerosis, basal ganglia in Huntington's disease, and cerebellar dentate nucleus in Friedreich's ataxia. Furthermore, the increased magnetic susceptibility correlated with disease duration and severity of clinical features in some disorders. Although the number of studies is still limited in most of the neurodegenerative diseases, the existing evidence suggests that QSM can be a promising tool in the investigation of neurodegeneration.

56 citations


Journal ArticleDOI
TL;DR: In this paper, an expression-weighted cell-type enrichment method was used to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease.
Abstract: Apart from well-defined factors in neuronal cells1, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia2,3 and blood vessels4. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins SPP1 and COL6A1 accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid. We propose that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology.

55 citations


Journal ArticleDOI
TL;DR: In this paper, the authors showed that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting motor neuron bioenergetics is sufficient to restore axonal homeostasis.
Abstract: Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.

54 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of amyotrophic lateral sclerosis (ALS) and the emerging potential of nonneuron cell biomarkers to advance therapeutic development.
Abstract: The prevailing motor neuron-centric view of amyotrophic lateral sclerosis (ALS) pathogenesis could be an important factor in the failure to identify disease-modifying therapy for this neurodegenerative disorder. Non-neuronal cells have crucial homeostatic functions within the CNS and evidence of involvement of these cells in the pathophysiology of several neurodegenerative disorders, including ALS, is accumulating. Microglia and astrocytes, in crosstalk with peripheral immune cells, can exert both neuroprotective and adverse effects, resulting in a highly nuanced range of neuronal and non-neuronal cell interactions. This Review provides an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of ALS and the emerging potential of non-neuronal cell biomarkers to advance therapeutic development.

51 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed targeted sequencing of a 44-gene panel in a prospective case series of 100 patients with ALS recruited consecutively from the Sheffield Motor Neuron Disorders Clinic, UK.
Abstract: Objective The clinical utility of routine genetic sequencing in amyotrophic lateral sclerosis (ALS) is uncertain. Our aim was to determine whether routine targeted sequencing of 44 ALS-relevant genes would have a significant impact on disease subclassification and clinical care. Methods We performed targeted sequencing of a 44-gene panel in a prospective case series of 100 patients with ALS recruited consecutively from the Sheffield Motor Neuron Disorders Clinic, UK. All participants were diagnosed with ALS by a specialist Consultant Neurologist. 7/100 patients had familial ALS, but the majority were apparently sporadic cases. Results 21% of patients with ALS carried a confirmed pathogenic or likely pathogenic mutation, of whom 93% had no family history of ALS. 15% met the inclusion criteria for a current ALS genetic-therapy trial. 5/21 patients with a pathogenic mutation had an additional variant of uncertain significance (VUS). An additional 21% of patients with ALS carried a VUS in an ALS-associated gene. Overall, 13% of patients carried more than one genetic variant (pathogenic or VUS). Patients with ALS carrying two variants developed disease at a significantly earlier age compared with patients with a single variant (median age of onset=56 vs 60 years, p=0.0074). Conclusions Routine screening for ALS-associated pathogenic mutations in a specialised ALS referral clinic will impact clinical care in 21% of cases. An additional 21% of patients have variants in the ALS gene panel currently of unconfirmed significance after removing non-specific or predicted benign variants. Overall, variants within known ALS-linked genes are of potential clinical importance in 42% of patients.

Journal ArticleDOI
03 Feb 2021-Neuron
TL;DR: The findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTd/ALS patients for HTTrepeat expansions should be considered.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in amyotrophic lateral sclerosis (ALS).
Abstract: Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.

Journal ArticleDOI
TL;DR: In this article, the role of physical exercise in the development of ALS was dissected in a series of two-sample Mendelian randomisation (MR) experiments and evidence supporting a causal relationship between genetic liability to frequent and strenuous leisure-time exercise and ALS using a liberal instrument was presented.

Journal ArticleDOI
TL;DR: In this paper, TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP43 mislocalization mouse model.
Abstract: Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.

Journal ArticleDOI
TL;DR: In this article, a range of molecular, genomic, and physiological techniques were used to identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature.
Abstract: Human induced pluripotent stem cells (iPSC) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from multiple human iPSC lines generated from individuals with ALS and isogenic lines edited to harbor familial ALS mutations show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable to understand the pathophysiological mechanisms of ALS.

Journal ArticleDOI
TL;DR: In this article, the authors show that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons and postmortem human motor cortex before the emergence of Nup alterations.
Abstract: Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.

Journal ArticleDOI
TL;DR: A review of the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation is presented in this article.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.

Journal ArticleDOI
TL;DR: Placing oxidative stress as a main pathophysiological mechanism, the molecular interactions and metabolic flows involved are analyzed and potential therapeutic approaches targeting mitochondrial biology to slow disease progression are discussed.
Abstract: Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease of the motor system. It is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and paralysis. ALS is incurable and has a bleak prognosis, with median survival of 3–5 years after the initial symptomatology. In ALS, motor neurons gradually degenerate and die. Many features of mitochondrial dysfunction are manifested in neurodegenerative diseases, including ALS. Mitochondria have shown to be an early target in ALS pathophysiology and contribute to disease progression. Disruption of their axonal transport, excessive generation of reactive oxygen species, disruption of the mitochondrial structure, dynamics, mitophagy, energy production, calcium buffering and apoptotic triggering have all been directly involved in disease pathogenesis and extensively reported in ALS patients and animal model systems. Alterations in energy production by motor neurons, which severely limit their survival capacity, are tightly linked to the redox status and mitochondria. The present review focuses on this link. Placing oxidative stress as a main pathophysiological mechanism, the molecular interactions and metabolic flows involved are analyzed. This leads to discussing potential therapeutic approaches targeting mitochondrial biology to slow disease progression.

Journal ArticleDOI
TL;DR: This article showed evidence for ferroptosis, a recently discovered iron-dependent form of regulated cell death, in ALS patients, showing a lack of expression of key necroptotic effector proteins in spinal cords.
Abstract: Amyotrophic lateral sclerosis (ALS) is caused by selective degeneration of motor neurons in the brain and spinal cord; however, the primary cell death pathway(s) mediating motor neuron demise remain elusive. We recently established that necroptosis, an inflammatory form of regulated cell death, was dispensable for motor neuron death in a mouse model of ALS, implicating other forms of cell death. Here, we confirm these findings in ALS patients, showing a lack of expression of key necroptotic effector proteins in spinal cords. Rather, we uncover evidence for ferroptosis, a recently discovered iron-dependent form of regulated cell death, in ALS. Depletion of glutathione peroxidase 4 (GPX4), an anti-oxidant enzyme and central repressor of ferroptosis, occurred in post-mortem spinal cords of both sporadic and familial ALS patients. GPX4 depletion was also an early and universal feature of spinal cords and brains of transgenic mutant superoxide dismutase 1 (SOD1G93A), TDP-43 and C9orf72 mouse models of ALS. GPX4 depletion and ferroptosis were linked to impaired NRF2 signalling and dysregulation of glutathione synthesis and iron-binding proteins. Novel BAC transgenic mice overexpressing human GPX4 exhibited high GPX4 expression localised to spinal motor neurons. Human GPX4 overexpression in SOD1G93A mice significantly delayed disease onset, improved locomotor function and prolonged lifespan, which was attributed to attenuated lipid peroxidation and motor neuron preservation. Our study discovers a new role for ferroptosis in mediating motor neuron death in ALS, supporting the use of anti-ferroptotic therapeutic strategies, such as GPX4 pathway induction and upregulation, for ALS treatment.

Journal ArticleDOI
TL;DR: In this article, the contribution of non-cell-autonomous processes to the pathogenesis of ALS was examined, with a focus on glial cells and in particular on astrocytes.

Journal ArticleDOI
TL;DR: In this article, the authors illustrate the significance of neurofilament light chain (NFL) as a biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Abstract: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer’s disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping.
Abstract: Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor neuron system, where variability in progression rate limits clinical trial efficacy. Therefore, better prognostication will facilitate therapeutic progress. In this study, we investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping. First, we identified, in a longitudinal cohort, miRNAs whose plasma levels remain stable over the course of disease. Next, we showed that high levels of miR-181, a miRNA enriched in neurons, predicts a greater than two-fold risk of death in independent discovery and replication cohorts (126 and 122 patients, respectively). miR-181 performance is similar to neurofilament light chain (NfL), and when combined together, miR-181 + NfL establish a novel RNA–protein biomarker pair with superior prognostication capacity. Therefore, plasma miR-181 alone and a novel miRNA–protein biomarker approach, based on miR-181 + NfL, boost precision of patient stratification. miR-181-based ALS biomarkers encourage additional validation and might enhance the power of clinical trials. Magen et al. discovered new miRNA-based biomarkers in the blood of patients with ALS. miR-181 levels alone or in combination with an established protein biomarker predict ALS severity and prognosis and might enhance the power of clinical trials.

Journal ArticleDOI
TL;DR: In this paper, the effect of increased protection against ferroptosis on motor neuron disease was assessed by cross-breeding GPX4 transgenic mice with SOD1G93A mice, a widely used ALS mouse model.
Abstract: Degeneration and death of motor neurons in Amyotrophic Lateral Sclerosis (ALS) are associated with increased lipid peroxidation. Lipid peroxidation is the driver of ferroptosis, an iron-dependent oxidative mode of cell death. However, the importance of ferroptosis in motor neuron degeneration of ALS remains unclear. Glutathione peroxidase 4 (Gpx4) is a key enzyme in suppressing ferroptosis by reducing phospholipid hydroperoxides in membranes. To assess the effect of increased protection against ferroptosis on motor neuron disease, we generated SOD1G93AGPX4 double transgenic mice by cross-breeding GPX4 transgenic mice with SOD1G93A mice, a widely used ALS mouse model. Compared with control SOD1G93A mice, both male and female SOD1G93AGPX4 mice had extended lifespans. SOD1G93AGPX4 mice also showed delayed disease onset and increased motor function, which were correlated with ameliorated spinal motor neuron degeneration and reduced lipid peroxidation. Moreover, cell toxicity induced by SOD1G93A was ameliorated by Gpx4 overexpression and by chemical inhibitors of ferroptosis in vitro. We further found that the anti-ferroptosis defense system in spinal cord tissues of symptomatic SOD1G93A mice and sporadic ALS patients might be compromised due to deficiency of Gpx4. Thus, our results suggest that ferroptosis plays a key role in motor neuron degeneration of ALS.

Journal ArticleDOI
TL;DR: In this paper, a non-coding CA repeat in the Stathmin-2 gene was identified and its association with sporadic ALS disease risk, age-of onset and survival duration was investigated.
Abstract: Objective: There is a critical need to establish genetic markers that explain the complex phenotypes and pathogenicity of ALS. This study identified a polymorphism in the Stathmin-2 gene and investigated its association with sporadic ALS disease risk, age-of onset and survival duration. Methods: The candidate CA repeat was systematically analyzed using PCR, Sanger sequencing and high throughput capillary separation for genotyping. Stathmin-2 expression was investigated using RT-PCR in patient olfactory neurosphere-derived cells and RNA sequencing in laser-captured spinal motor neurons. Results: In a case-control analysis of a combined North American sporadic ALS cohort (n = 321) and population control group (n=332), long/long CA genotypes were significantly associated with disease risk (p = 0.042), and most strongly when one allele was a 24 CA repeat (p = 0.0023). In addition, longer CA allele length was associated with earlier age-of-onset (p = 0.039), and shorter survival duration in bulbar-onset cases (p = 0.006). In an Australian longitudinal sALS cohort (n = 67), ALS functional rating scale scores were significantly lower in carriers of the long/long genotype (p = 0.034). Stathmin-2 mRNA expression was reduced in sporadic patient olfactory neurosphere-derived cells. Additionally, sALS patients and controls exhibited variable expression of Stathmin-2 mRNA according to CA genotype in laser-captured spinal motor neurons. Conclusions: We report a novel non-coding CA repeat in Stathmin-2 which is associated with sporadic ALS disease risk and has disease modifying effects. The potential value of this variant as a disease marker and tool for cohort enrichment in clinical trials warrants further investigation.

Journal ArticleDOI
TL;DR: Induced pluripotent stem cells from healthy controls, familial ALS, and sporadic ALS patients were differentiated toward spinal MNs, cortical neurons, and cardiomyocytes and activating SIRT3 using nicotinamide or a small molecule activator reversed the defective metabolic profiles in all ALS MNs and correct a constellation of ALS-associated phenotypes.
Abstract: Motor neurons (MNs) are highly energetic cells and recent studies suggest that altered energy metabolism precede MN loss in amyotrophic lateral sclerosis (ALS), an age-onset neurodegenerative disease. However, clear mechanistic insights linking altered metabolism and MN death are still missing. In this study, induced pluripotent stem cells from healthy controls, familial ALS, and sporadic ALS patients were differentiated toward spinal MNs, cortical neurons, and cardiomyocytes. Metabolic flux analyses reveal an MN-specific deficiency in mitochondrial respiration in ALS. Intriguingly, all forms of familial and sporadic ALS MNs tested in our study exhibited similar defective metabolic profiles, which were attributed to hyper-acetylation of mitochondrial proteins. In the mitochondria, Sirtuin-3 (SIRT3) functions as a mitochondrial deacetylase to maintain mitochondrial function and integrity. We found that activating SIRT3 using nicotinamide or a small molecule activator reversed the defective metabolic profiles in all our ALS MNs, as well as correct a constellation of ALS-associated phenotypes.

Journal ArticleDOI
Janel O. Johnson1, Ruth Chia1, Danny E. Miller2, Rachel Li3  +285 moreInstitutions (78)
TL;DR: In this article, three whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation, and three de novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients and failure to thrive.
Abstract: Importance Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective To identify the genetic variants associated with juvenile ALS. Design, setting, and participants In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main outcomes and measures De novo variants present only in the index case and not in unaffected family members. Results Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and relevance These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.

Journal ArticleDOI
TL;DR: The sigma 1 receptor modulates essential mechanisms for motoneuron survival including excitotoxicity, calcium homeostasis, ER stress and mitochondrial dysfunction, which may constitute a novel target for therapeutic strategies.
Abstract: Amyotrophic lateral sclerosis (ALS) is an adult disease causing a progressive loss of upper and lower motoneurons, muscle paralysis and early death. ALS has a poor prognosis of 3-5 years after diagnosis with no effective cure. The aetiopathogenic mechanisms involved include glutamate excitotoxicity, oxidative stress, protein misfolding, mitochondrial alterations, disrupted axonal transport and inflammation. Sigma non-opioid intracellular receptor 1 (sigma 1 receptor) is a protein expressed in motoneurons, mainly found in the endoplasmic reticulum (ER) on the mitochondria-associated ER membrane (MAM) or in close contact with cholinergic postsynaptic sites. MAMs are sites that allow the assembly of several complexes implicated in essential survival cell functions. The sigma 1 receptor modulates essential mechanisms for motoneuron survival including excitotoxicity, calcium homeostasis, ER stress and mitochondrial dysfunction. This review updates sigma 1 receptor mechanisms and its alterations in ALS, focusing on MAM modulation, which may constitute a novel target for therapeutic strategies. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.

Journal ArticleDOI
TL;DR: A review of the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS can be found in this paper, with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Abstract: Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.

Journal ArticleDOI
TL;DR: It is provided the first evidence that TDP‐43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mis localisation of T DP‐43.
Abstract: Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease pathologically characterised by mislocalisation of the RNA-binding protein TAR-DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm. Changes to neuronal excitability and synapse dysfunction in the motor cortex are early pathological changes occurring in people with ALS and mouse models of disease. To investigate the effect of mislocalised TDP-43 on the function of motor cortex neurons we utilised mouse models that express either human wild-type (TDP-43WT ) or nuclear localisation sequence-deficient TDP-43 (TDP-43ΔNLS ) on an inducible promoter that enriches expression to forebrain neurons. Pathophysiology was investigated through immunohistochemistry and whole-cell patch-clamp electrophysiology. Thirty days expression of TDP-43ΔNLS in adult mice did not cause any changes in the number of CTIP2-positive neurons in the motor cortex. However, at this time-point, the expression of TDP-43ΔNLS drives intrinsic hyperexcitability in layer V excitatory neurons of the motor cortex. This hyperexcitability occurs concomitantly with a decrease in excitatory synaptic input to these cells and fluctuations in both directions of ionotropic glutamate receptors. This pathophysiology is not present with TDP-43WT expression, demonstrating that the localisation of TDP-43 to the cytoplasm is crucial for the altered excitability phenotype. This study has important implications for the mechanisms of toxicity of one of the most notorious proteins linked to ALS, TDP-43. We provide the first evidence that TDP-43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mislocalisation of TDP-43.