scispace - formally typeset
Search or ask a question
Topic

Amyotrophic lateral sclerosis

About: Amyotrophic lateral sclerosis is a research topic. Over the lifetime, 12011 publications have been published within this topic receiving 494642 citations. The topic is also known as: ALS & Lou Gehrig's disease.


Papers
More filters
Journal ArticleDOI
02 Jun 2006-Science
TL;DR: Onset and progression of amyotrophic lateral sclerosis represent distinct disease phases defined by mutant action within different cell types to generate non–cell-autonomous killing of motor neurons; these findings validate therapies, including cell replacement, targeted to the non-neuronal cells.
Abstract: Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), a progressive paralytic disease characterized by loss of motor neurons. With the use of mice carrying a deletable mutant gene, expression within motor neurons was shown to be a primary determinant of disease onset and of an early phase of disease progression. Diminishing the mutant levels in microglia had little effect on the early disease phase but sharply slowed later disease progression. Onset and progression thus represent distinct disease phases defined by mutant action within different cell types to generate non-cell-autonomous killing of motor neurons; these findings validate therapies, including cell replacement, targeted to the non-neuronal cells.

1,538 citations

Journal ArticleDOI
01 Jun 1995-Neuron
TL;DR: Mutations in Cu/Zn superoxide dismutase cause a subset of cases of familial amyotrophic lateral sclerosis, and four lines of mice accumulating one of these mutant proteins (G37R) develop severe, progressive motor neuron disease.

1,470 citations

Journal ArticleDOI
TL;DR: Findings further corroborate that TDP-43 is involved in ALS pathogenesis and reports eight missense mutations in nine individuals—six from individuals with sporadic ALS and three from those with familial ALS (FALS)—and a concurring increase of a smaller T DP-43 product.
Abstract: Recently, TDP-43 was identified as a key component of ubiquitinated aggregates in amyotrophic lateral sclerosis (ALS), an adult-onset neurological disorder that leads to the degeneration of motor neurons. Here we report eight missense mutations in nine individuals--six from individuals with sporadic ALS (SALS) and three from those with familial ALS (FALS)--and a concurring increase of a smaller TDP-43 product. These findings further corroborate that TDP-43 is involved in ALS pathogenesis.

1,453 citations

Journal ArticleDOI
TL;DR: Developing C‐terminal, antioligopeptide antibodies that were specific for each glutamate transporter subtype found that GLT‐1 immunoreactive protein was severely decreased in ALS, both in motor cortex (71% decrease compared with control) and in spinal cord.
Abstract: The pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) is unknown, but defects in synaptosomal high-affinity glutamate transport have been observed. In experimental models, chronic loss of glutamate transport can produce a loss of motor neurons and, therefore, could contribute to the disease. With the recent cloning of three glutamate transporters, i.e., EAAC1, GLT-1, and GLAST, it has become possible to determine if the loss of glutamate transport in ALS is subtype specific. We developed C-terminal, antioligopeptide antibodies that were specific for each glutamate transporter. EAAC1 is selective for neurons, while GLT-1 and GLAST are selective for astroglia. Tissue from various brain regions of ALS patients and controls were examined by immunoblot or immunocytochemical methods for each transporter subtype. All tissue was matched for age and postmortem delay. GLT-1 immunoreactive protein was severely decreased in ALS, both in motor cortex (71% decrease compared with control) and in spinal cord. In approximately a quarter of the ALS motor cortex specimens, the loss of GLT-1 protein (90% decrease from control) was dramatic. By contrast, there was only a modest loss (20% decrease from control) of immunoreactive protein EAAC1 in ALS motor cortex, and there was no appreciable change in GLAST. The minor loss of EAAC1 could be secondary to loss of cortical motor neurons. As a comparison, glial fibrillary acidic protein, which is selectively localized to astroglia, was not changed in ALS motor cortex. Because there is no loss of astroglia in ALS, the dramatic abnormalities in GLT-1 could reflect a primary defect in GLT-1 protein, a secondary loss due to down regulation, or other toxic processes.

1,441 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
90% related
Epilepsy
62.7K papers, 1.7M citations
86% related
Dementia
72.2K papers, 2.7M citations
85% related
Neuroprotection
32.5K papers, 1.4M citations
84% related
Dopaminergic
29K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,020
20222,609
2021728
2020704
2019651