scispace - formally typeset
Search or ask a question
Topic

Analyte

About: Analyte is a research topic. Over the lifetime, 14902 publications have been published within this topic receiving 366256 citations. The topic is also known as: titrand.


Papers
More filters
Journal ArticleDOI
TL;DR: The presented review provides information relating to the calculation of the limit of detection and limit of quantitation.
Abstract: The quality of an analytical method developed is always appraised in terms of suitability for its intended purpose, recovery, requirement for standardization, sensitivity, analyte stability, ease of analysis, skill subset required, time and cost in that order. It is highly imperative to establish through a systematic process that the analytical method under question is acceptable for its intended purpose. Limit of detection (LOD) and limit of quantification (LOQ) are two important performance characteristics in method validation. LOD and LOQ are terms used to describe the smallest concentration of an analyte that can be reliably measured by an analytical procedure. There has often been a lack of agreement within the clinical laboratory field as to the terminology best suited to describe this parameter. Likewise, there have been various methods for estimating it. The presented review provides information relating to the calculation of the limit of detection and limit of quantitation. Brief information about differences in various regulatory agencies about these parameters is also presented here.

2,264 citations

Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: The preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties is reported, anticipating that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses.
Abstract: Chemical sensors respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare 'intelligent' materials responsive to a wide range of analytes, including viruses.

1,861 citations

Patent
30 Oct 2007
TL;DR: An analyte monitor includes a sensor, a sensor control unit, and a display unit as discussed by the authors, which is used to display an indication of a level of an analyte, based on the data obtained using the sensor.
Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.

1,856 citations

01 Aug 2008
TL;DR: The Limit of Blank, Limit of Detection, and Limit of Quantitation are terms used to describe the smallest concentration of a measurand that can be reliably measured by an analytical procedure.
Abstract: * Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration of a measurand that can be reliably measured by an analytical procedure. * LoB is the highest apparent analyte concentration expected to be found when replicates of a blank sample containing no analyte are tested. LoB = mean(blank) + 1.645(SD(blank)). * LoD is the lowest analyte concentration likely to be reliably distinguished from the LoB and at which detection is feasible. LoD is determined by utilising both the measured LoB and test replicates of a sample known to contain a low concentration of analyte. * LoD = LoB + 1.645(SD (low concentration sample)). * LoQ is the lowest concentration at which the analyte can not only be reliably detected but at which some predefined goals for bias and imprecision are met. The LoQ may be equivalent to the LoD or it could be at a much higher concentration.

1,656 citations

Journal ArticleDOI
TL;DR: Options for minimizing or correcting ion suppression are presented, which include enhanced specimen cleanup, chromatographic changes, reagent modifications, and effective internal standardization.
Abstract: Background: Mass spectrometry (MS) is being introduced into a large number of clinical laboratories. It provides specificity because of its ability to monitor selected mass ions, sensitivity because of the enhanced signal-to-noise ratio, and speed because it can help avoid the need for intensive sample cleanup and long analysis times. However, MS is not without problems related to interference, especially through ion suppression effects. Ion suppression results from the presence of less volatile compounds that can change the efficiency of droplet formation or droplet evaporation, which in turn affects the amount of charged ion in the gas phase that ultimately reaches the detector. Content: This review discusses materials shown to cause ion suppression, including salts, ion-pairing agents, endogenous compounds, drugs, metabolites, and proteins. Experimental protocols for examining ion suppression, which should include, at a minimum, signal recovery studies using specimen extracts with added analyte, are also discussed, and a more comprehensive approach is presented that uses postcolumn infusion of the analyte to evaluate protracted ionization effects. Finally, this review presents options for minimizing or correcting ion suppression, which include enhanced specimen cleanup, chromatographic changes, reagent modifications, and effective internal standardization. Summary: Whenever mass spectrometric assays are developed, ion suppression studies should be performed using expected physiologic concentrations of the analyte under investigation.

1,478 citations


Network Information
Related Topics (5)
Mass spectrometry
72.2K papers, 2M citations
90% related
High-performance liquid chromatography
47.3K papers, 1M citations
89% related
Colloidal gold
25.1K papers, 904.4K citations
85% related
Metal ions in aqueous solution
28.6K papers, 715K citations
83% related
Reagent
60K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,359
20223,017
2021388
2020562
2019489
2018447