scispace - formally typeset
Search or ask a question
Topic

AND gate

About: AND gate is a research topic. Over the lifetime, 11860 publications have been published within this topic receiving 109726 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a compact, physical, short-channel threshold voltage model for undoped symmetric double-gate MOSFETs is derived based on an analytical solution of the two-dimensional (2-D) Poisson equation with the mobile charge term included.
Abstract: A compact, physical, short-channel threshold voltage model for undoped symmetric double-gate MOSFETs has been derived based on an analytical solution of the two-dimensional (2-D) Poisson equation with the mobile charge term included. The new model is verified by published numerical simulations with close agreement. Applying the newly developed model, threshold voltage sensitivities to channel length, channel thickness, and gate oxide thickness have been comprehensively investigated. For practical device designs the channel length causes 30-50% more threshold voltage variation than does the channel thickness for the same process tolerance, while the gate oxide thickness causes the least, relatively insignificant threshold voltage variation. Model predictions indicate that individual DG MOSFETs with good turn-off behavior are feasible at 10 nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires development of novel technologies for significant improvement in process control.

236 citations

Journal ArticleDOI
TL;DR: In this paper, a machine-learning approach was proposed to discover short-depth algorithms for computing the overlap between two quantum states ρ and σ. The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ = σ, quantifies the Renyi entanglement.
Abstract: Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap between two quantum states ρ and σ. The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to ρ = σ, quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has a constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error—compared to the Swap Test—on these computers.

233 citations

Journal ArticleDOI
TL;DR: A biomolecular security system mimicking a keypad lock device was developed using enzyme-based concatenated AND logic gates resulting in the implication logic network.
Abstract: A biomolecular security system mimicking a keypad lock device was developed using enzyme-based concatenated AND logic gates resulting in the implication logic network.

231 citations

Journal ArticleDOI
TL;DR: This is the first time that switching and logic functionalities have been experimentally demonstrated in Y-junction nanotubes without the need for an external gate, and a class of nanoelectronic architecture and functionality, which extends well beyond conventional field-effect transistor technologies, is now possible.
Abstract: Carbon-nanotube-based electronics offers significant potential as a nanoscale alternative to silicon-based devices for molecular electronics technologies. Here, we show evidence for a dramatic electrical switching behaviour in a Y-junction carbon-nanotube morphology. We observe an abrupt modulation of the current from an on- to an off-state, presumably mediated by defects and the topology of the junction. The mutual interaction of the electron currents in the three branches of the Y-junction is shown to be the basis for a potentially new logic device. This is the first time that such switching and logic functionalities have been experimentally demonstrated in Y-junction nanotubes without the need for an external gate. A class of nanoelectronic architecture and functionality, which extends well beyond conventional field-effect transistor technologies, is now possible.

230 citations

Patent
14 Jan 2008
TL;DR: In this article, an optical AND logic gate assembly for processing packetised optical signals is described, where the probe signals have an interval between pulses substantially equal to the interval between data elements of the packetised data to be extracted.
Abstract: Optical signal processing apparatus for processing packetised optical signals comprising a probe signal generator which is arranged to issue a plurality probe pulses, and an optical AND logic gate assembly, the arrangement of the apparatus being such that, in use, the probe signals have an interval between pulses substantially equal to the interval between data elements of the packetised data to be extracted, and the packetised data and the probe pulses are then combined by the AND logic gate assembly.

230 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
85% related
Voltage
296.3K papers, 1.7M citations
81% related
Capacitor
166.6K papers, 1.4M citations
79% related
Silicon
196K papers, 3M citations
79% related
Amplifier
163.9K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202219
2021209
2020308
2019356
2018372