scispace - formally typeset
Search or ask a question
Topic

Anderson impurity model

About: Anderson impurity model is a research topic. Over the lifetime, 5582 publications have been published within this topic receiving 132339 citations.


Papers
More filters
Book
01 Jan 1981
TL;DR: In this article, the authors present a model for the second quantization of a particle and show that it can be used to construct a pair distribution function with respect to a pair of spinless fermions.
Abstract: 1. Introductory Material.- 1.1. Harmonic Oscillators and Phonons.- 1.2. Second Quantization for Particles.- 1.3. Electron - Phonon Interactions.- A. Interaction Hamiltonian.- B. Localized Electron.- C. Deformation Potential.- D. Piezoelectric Interaction.- E. Polar Coupling.- 1.4. Spin Hamiltonians.- A. Homogeneous Spin Systems.- B. Impurity Spin Models.- 1.5. Photons.- A. Gauges.- B. Lagrangian.- C. Hamiltonian.- 1.6. Pair Distribution Function.- Problems.- 2. Green's Functions at Zero Temperature.- 2.1. Interaction Representation.- A. Schrodinger.- B. Heisenberg.- C. Interaction.- 2.2. S Matrix.- 2.3. Green's Functions.- 2.4. Wick's Theorem.- 2.5. Feynman Diagrams.- 2.6. Vacuum Polarization Graphs.- 2.7. Dyson's Equation.- 2.8. Rules for Constructing Diagrams.- 2.9. Time-Loop S Matrix.- A. Six Green's Functions.- B. Dyson's Equation.- 2.10. Photon Green's Functions.- Problems.- 3. Green's Functions at Finite Temperatures.- 3.1. Introduction.- 3.2. Matsubara Green's Functions.- 3.3. Retarded and Advanced Green's Functions.- 3.4. Dyson's Equation.- 3.5. Frequency Summations.- 3.6. Linked Cluster Expansions.- A. Thermodynamic Potential.- B. Green's Functions.- 3.7. Real Time Green's Functions.- Wigner Distribution Function.- 3.8. Kubo Formula for Electrical Conductivity.- A. Transverse Fields, Zero Temperature.- B. Finite Temperatures.- C. Zero Frequency.- D. Photon Self-Energy.- 3.9. Other Kubo Formulas.- A. Pauli Paramagnetic Susceptibility.- B. Thermal Currents and Onsager Relations.- C. Correlation Functions.- Problems.- 4. Exactly Solvable Models.- 4.1. Potential Scattering.- A. Reaction Matrix.- B. T Matrix.- C. Friedel's Theorem.- D. Phase Shifts.- E. Impurity Scattering.- F. Ground State Energy.- 4.2. Localized State in the Continuum.- 4.3. Independent Boson Models.- A. Solution by Canonical Transformation.- B. Feynman Disentangling of Operators.- C. Einstein Model.- D. Optical Absorption and Emission.- E. Sudden Switching.- F. Linked Cluster Expansion.- 4.4. Tomonaga Model.- A. Tomonaga Model.- B. Spin Waves.- C. Luttinger Model.- D. Single-Particle Properties.- E. Interacting System of Spinless Fermions.- F. Electron Exchange.- 4.5. Polaritons.- A. Semiclassical Discussion.- B. Phonon-Photon Coupling.- C. Exciton-Photon Coupling.- Problems.- 5. Electron Gas.- 5.1. Exchange and Correlation.- A. Kinetic Energy.- B. Direct Coulomb.- C. Exchange.- D. Seitz' Theorem.- E. ?(2a).- F. ?(2b).- G. ?(2c).- H. High-Density Limit.- I. Pair Distribution Function.- 5.2. Wigner Lattice and Metallic Hydrogen.- Metallic Hydrogen.- 5.3. Cohesive Energy of Metals.- 5.4. Linear Screening.- 5.5. Model Dielectric Functions.- A. Thomas-Fermi.- B. Lindhard, or RPA.- C. Hubbard.- D. Singwi-Sjolander.- 5.6. Properties of the Electron Gas.- A. Pair Distribution Function.- B. Screening Charge.- C. Correlation Energies.- D. Compressibility.- 5.7. Sum Rules.- 5.8. One-Electron Properties.- A. Renormalization Constant ZF.- B. Effective Mass.- C. Pauli Paramagnetic Susceptibility.- D. Mean Free Path.- Problems.- 6. Electron-Phonon Interaction.- 6.1 Frohlich Hamiltonian.- A. Brillouin-Wigner Perturbation Theory.- B. Rayleigh-Schrodinger Perturbation Theory.- C. Strong Coupling Theory.- D. Linked Cluster Theory.- 6.2 Small Polaron Theory.- A. Large Polarons.- B. Small Polarons.- C. Diagonal Transitions.- D. Nondiagonal Transitions.- E. Dispersive Phonons.- F. Einstein Model.- G. Kubo Formula.- 6.3 Heavily Doped Semiconductors.- A. Screened Interaction.- B. Experimental Verifications.- C. Electron Self-Energies.- 6.4 Metals.- A. Phonons in Metals.- B. Electron Self-Energies.- Problems.- 7. dc Conductivities.- 7.1. Electron Scattering by Impurities.- A. Boltzmann Equation.- B. Kubo Formula: Approximate Solution.- C. Kubo Formula: Rigorous Solution.- D. Ward Identities.- 7.2. Mobility of Frohlich Polarons.- A. Single-Particle Properties.- B. ??1 Term in the Mobility.- 7.3. Electron-Phonon Interactions in Metals.- A. Force-Force Correlation Function.- B. Kubo Formula.- C. Mass Enhancement.- D. Thermoelectric Power.- 7.4. Quantum Boltzmann Equation.- A. Derivation of the Quantum Boltzmann Equation.- B. Gradient Expansion.- C. Electron Scattering by Impurities.- D. T2 Contribution to the Electrical Resistivity.- Problems.- 8. Optical Properties of Solids.- 8.1. Nearly Free-Electron System.- A. General Properties.- B. Force-Force Correlation Functions.- C. Frohlich Polarons.- D. Interband Transitions.- E. Phonons.- 8.2. Wannier Excitons.- A. The Model.- B. Solution by Green's Functions.- C. Core-Level Spectra.- 8.3. X-Ray Spectra in Metals.- A. Physical Model.- B. Edge Singularities.- C. Orthogonality Catastrophe.- D. MND Theory.- E. XPS Spectra.- Problems.- 9. Superconductivity.- 9.1. Cooper Instability.- 9.2. BCS Theory.- 9.3. Electron Tunneling.- A. Tunneling Hamiltonian.- B. Normal Metals.- C. Normal-Superconductor.- D. Two Superconductors.- E. Josephson Tunneling.- 9.4. Infrared Absorption.- 9.5. Acoustic Attenuation.- 9.6. Excitons in Superconductors.- 9.7. Strong Coupling Theory.- Problems.- 10. Liquid Helium.- 10.1. Pairing Theory.- A. Hartree and Exchange.- B. Bogoliubov Theory of 4He.- 10.2. 4He: Ground State Properties.- A. Off-Diagonal Long-Range Order.- B. Correlated Basis Functions.- C. Experiments on nk.- 10.3. 4He: Excitation Spectrum.- A. Bijl-Feynman Theory.- B. Improved Excitation Spectra.- C. Superfluidity.- 10.4. 3He: Normal Liquid.- A. Fermi Liquid Theory.- B. Experiments and Microscopic Theories.- C. Interaction between Quasiparticles: Excitations.- D. Quasiparticle Transport.- 10.5. Superfluid 3He.- A. Triplet Pairing.- B. Equal Spin Pairing.- Problems.- 11. Spin Fluctuations.- 11.1. Kondo Model.- A. High-Temperature Scattering.- B. Low-Temperature State.- C. Kondo Temperature.- 11.2. Anderson Model.- A. Collective States.- B. Green's Functions.- C. Spectroscopies.- Problems.- References.- Author Index.

5,888 citations

Journal ArticleDOI
Philip W. Anderson1
TL;DR: In this article, the conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed, and a self-consistent Hartree-Fock treatment is applied to show that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell.
Abstract: The conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed. A self-consistent Hartree-Fock treatment shows that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell; that in the magnetic state the $d$ polarization can be reduced rather severely to nonintegral values, without appreciable free electron polarization because of a compensation effect; and that in the nonmagnetic state the virtual localized $d$ level tends to lie near the Fermi surface. It is emphasized that the condition for the magnetic state depends on the Coulomb (i.e., exchange self-energy) integral, and that the usual type of exchange alone is not large enough in $d$-shell ions to allow magnetic moments to be present. We show that the susceptibility and specific heat due to the inner shell electrons show strongly contrasting behavior even in the nonmagnetic state. A calculation including degenerate $d$ orbitals and $d\ensuremath{-}d$ exchange shows that the orbital angular momentum can be quenched, even when localized spin moments exist, and even on an isolated magnetic atom, by kinetic energy effects.

4,039 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of the Local Density Approximation (LDA) method for the systems with strong Coulomb correlations is presented which gives a correct description of the Mott insulators.
Abstract: The generalization of the Local Density Approximation (LDA) method for the systems with strong Coulomb correlations is presented which gives a correct description of the Mott insulators. The LDA+U method is based on the model hamiltonian approach and allows to take into account the non-sphericity of the Coulomb and exchange interactions. parameters. Orbital-dependent LDA+U potential gives correct orbital polarization and corresponding Jahn-Teller distortion. To calculate the spectra of the strongly correlated systems the impurity Anderson model should be solved with a many-electron trial wave function. All parameters of the many-electron hamiltonian are taken from LDA+U calculations. The method was applied to NiO and has shown good agreement with experimental photoemission spectra and with the oxygen Kα X-ray emission spectrum.

3,331 citations

Book
28 Jan 1993
TL;DR: In this article, the Kondo problem and the Bethe ansatz have been studied in the context of magnetic impurities and fermi liquid theories, and N-fold degenerate models have been proposed.
Abstract: 1. Models of magnetic impurities 2. Resistivity calculations and the resistance minimum 3. The Kondo problem 4. Renormalization group calculations 5. Fermi liquid theories 6. Exact solutions and the Bethe ansatz 7. N-fold degenerate models I 8. N-fold degenerate models II 9. Theory and experiment 10. Strongly correlated fermions Appendices.

2,763 citations

Journal ArticleDOI
08 Jan 1998-Nature
TL;DR: In this paper, the binding energy of the spin singlet has been observed in a single-electron transistor (SET) with only two electrodes and without control over the structure.
Abstract: How localized electrons interact with delocalized electrons is a central question to many problems in sold-state physics1,2,3. The simplest manifestation of this situation is the Kondo effect, which occurs when an impurity atom with an unpaired electron is placed in a metal2. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. Theories predict4,5,6,7 that a Kondo singlet should form in a single-electron transistor (SET), which contains a confined ‘droplet’ of electrons coupled by quantum-mechanical tunnelling to the delocalized electrons in the transistor's leads. If this is so, a SET could provide a means of investigating aspects of the Kondo effect under controlled circumstances that are not accessible in conventional systems: the number of electrons can be changed from odd to even, the difference in energy between the localized state and the Fermi level can be tuned, the coupling to the leads can be adjusted, voltage differences can be applied to reveal non-equilibrium Kondo phenomena7, and a single localized state can be studied rather than a statistical distribution. But for SETs fabricated previously, the binding energy of the spin singlet has been too small to observe Kondo phenomena. Ralph and Buhrman8 have observed the Kondo singlet at a single accidental impurity in a metal point contact, but with only two electrodes and without control over the structure they were not able to observe all of the features predicted. Here we report measurements on SETs smaller than those made previously, which exhibit all of the predicted aspects of the Kondo effect in such a system.

1,723 citations


Network Information
Related Topics (5)
Phonon
41K papers, 842.9K citations
92% related
Ferromagnetism
55K papers, 1.2M citations
91% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
89% related
Magnetization
107.8K papers, 1.9M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202342
202281
202180
202068
201983
201889