scispace - formally typeset
Search or ask a question

Showing papers on "Angiogenesis published in 2016"


Journal ArticleDOI
TL;DR: A clear understanding of the tight and multi-level regulation of VEGFR2 signalling is key to successful therapeutic suppression or stimulation of vascular growth.
Abstract: Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.

958 citations


Journal ArticleDOI
TL;DR: The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process.
Abstract: Regeneration and tissue repair processes consist of a sequence of molecular and cellular events which occur after the onset of a tissue lesion in order to restore the damaged tissue. The exsudative, proliferative, and extracellular matrix remodeling phases are sequential events that occur through the integration of dynamic processes involving soluble mediators, blood cells, and parenchymal cells. Exsudative phenomena that take place after injury contribute to the development of tissue edema. The proliferative stage seeks to reduce the area of tissue injury by contracting myofibroblasts and fibroplasia. At this stage, angiogenesis and reepithelialization processes can still be observed. Endothelial cells are able to differentiate into mesenchymal components, and this difference appears to be finely orchestrated by a set of signaling proteins that have been studied in the literature. This pathway is known as Hedgehog. The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process.

873 citations


Journal ArticleDOI
TL;DR: The key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions are examined and their roles in CNS disorders including rare monogenic diseases and complex neurological disorders are reviewed.
Abstract: Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies.

701 citations


Journal ArticleDOI
TL;DR: The discovery of V EGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases are discussed.
Abstract: The targeting of vascular endothelial growth factor A (VEGFA), a crucial regulator of both normal and pathological angiogenesis, has revealed innovative therapeutic approaches in oncology and ophthalmology. The first VEGFA inhibitor, bevacizumab, was approved by the US Food and Drug Administration in 2004 for the first-line treatment of metastatic colorectal cancer, and the first VEGFA inhibitors in ophthalmology, pegaptanib and ranibizumab, were approved in 2004 and 2006, respectively. To mark this tenth anniversary of anti-VEGFA therapy, we discuss the discovery of VEGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases.

672 citations


01 Jan 2016
TL;DR: This article showed that scatter factor may act as a paracrine mediator in pathologic angio- genesis associated with human inflammatory disease, and immunoreactive scatter factor is present surrounding sites of blood vessel formation in psoriatic skin.
Abstract: Scatter factor (also known as hepatocyte growth factor) is a glycoprotein secreted by stromal cells that stimulates cell motility and proliferation. In vitro, scatter factor stimulates vascular endothelial cell migration, proliferation, and organization into capillary-like tubes. Using two different in vivo assays, we showed that physiologic quantities of purified native mouse scatter factor and recombinant human hepato- cyte growth factor induce angiogenesis (the formation of new blood vessels). The angiogenic activity was blocked by specific anti-scatter factor antibodies. Scatter factor induced cultured microvascular endothelial cells to accumulate and secrete sig- nificantly increased quantities of urokinase, an enzyme asso- ciated with development of an invasive endothelial phenotype during angiogenesis. We further showed that immunoreactive scatter factor is present surrounding sites of blood vessel formation in psoriatic skin. These rmdings suggest that scatter factor may act as a paracrine mediator in pathologic angio- genesis associated with human inflammatory disease.

668 citations


Journal ArticleDOI
TL;DR: Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer.
Abstract: In the last several decades, the number of people dying from cancer-related deaths has not reduced significantly despite phenomenal advances in the technologies related to diagnosis and therapeutic modalities The principal cause behind limitations in the curability of this disease is the reducing sensitivity of the cancer cells towards conventional anticancer therapeutic modalities, particularly in advance stages of the disease Amongst several reasons, certain secretory factors released by the tumour cells into the microenvironment have been found to confer resistance towards chemo- and radiotherapy, besides promoting growth Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer Its overexpression has been reported in almost all types of tumours The strong association between inflammation and cancer is reflected by the high IL-6 levels in the tumour microenvironment, where it promotes tumorigenesis by regulating all hallmarks of cancer and multiple signalling pathways, including apoptosis, survival, proliferation, angiogenesis, invasiveness and metastasis, and, most importantly, the metabolism Moreover, IL-6 protects the cancer cells from therapy-induced DNA damage, oxidative stress and apoptosis by facilitating the repair and induction of countersignalling (antioxidant and anti-apoptotic/pro-survival) pathways Therefore, blocking IL-6 or inhibiting its associated signalling independently or in combination with conventional anticancer therapies could be a potential therapeutic strategy for the treatment of cancers with IL-6-dominated signalling

645 citations


Journal ArticleDOI
TL;DR: The current understanding of the consequences of HIF activity and the translational potential of targeting HIFs for cancer therapy are discussed.
Abstract: Intratumoral hypoxia (reduced O 2 availability) is a common finding in human cancer and leads to increased activity of hypoxia-inducible factors (HIFs), which regulate the expression of genes that contribute to angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial–mesenchymal transition, motility, invasion, metastasis, cancer stem cell maintenance, immune evasion, and resistance to chemotherapy and radiation therapy. Conventional anticancer therapies target well-oxygenated and proliferating cancer cells, whereas there are no approved therapies that target hypoxic cancer cells, despite growing clinical and experimental evidence indicating that intratumoral hypoxia is a critical microenvironmental factor driving cancer progression. In this review, our current understanding of the consequences of HIF activity and the translational potential of targeting HIFs for cancer therapy are discussed.

636 citations


Journal ArticleDOI
TL;DR: The functions of HIFs in the progression and treatment of malignant solid tumors are reviewed and how they may be targeted to improve the management of patients with therapy-resistant and metastatic cancer is highlighted.

481 citations


Journal ArticleDOI
TL;DR: It is shown that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis, which reduces cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels by PFKFB3-blockade treatment, which improved vessel maturation and perfusion.

416 citations


Journal ArticleDOI
14 Jan 2016-Nature
TL;DR: It is reported that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs and the FOXO–MYC transcriptional network is defined as a novel metabolic checkpoint during endothelial growth and proliferation.
Abstract: Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.

408 citations


Journal ArticleDOI
TL;DR: It is indicated that adMSC-Exo can transfer miR-125a to endothelial cells and promote angiogenesis by repressing DLL4 and repressed the expression of the angiogenic inhibitor delta-like 4 by targeting its 3′ untranslated region.
Abstract: Angiogenesis plays crucial roles in various physiological processes including wound healing and tissue repair. It requires a tight interaction between endothelial cells and their surrounding environment. Mesenchymal stem cells (MSCs), one of the non-endothelial cell types present in the perivascular environment, have been shown to secret exosomes to modulate intercellular communications between MSCs and their target cells. In this study, we initially isolated exosomes secreted by human adipose-derived MSCs (adMSC-Exo) and examined their roles in angiogenesis. We found that adMSC-Exo could be taken up by endothelial cells and significantly promote angiogenesis in vitro and in vivo Further study showed that miR-125a was enriched in adMSC-Exo, and repressed the expression of the angiogenic inhibitor delta-like 4 (DLL4) by targeting its 3' untranslated region. Additionally, adMSC-Exo and its exosomal transferred miR-125a could repress DLL4 expression and modulate endothelial cell angiogenesis through promoting formation of endothelial tip cells. In conclusion, our study indicates that adMSC-Exo can transfer miR-125a to endothelial cells and promote angiogenesis by repressing DLL4. adMSC-Exo, as a pro-angiogenic factor, might be a promising candidate for therapeutical tissue repair.

Journal ArticleDOI
TL;DR: The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process, and provides a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.
Abstract: Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.

Journal ArticleDOI
TL;DR: The results of the proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue‐related diseases.
Abstract: Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusive. To address this we used high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry, an unbiased high throughput proteomics approach to comprehensively characterize the proteinaceous contents of MSCs and MSC derived exosomes. We probed the proteome of MSCs and MSC derived exosomes from cells cultured under expansion conditions and under ischemic tissue simulated conditions to elucidate key angiogenic paracrine effectors present and potentially differentially expressed in these conditions. In total, 6,342 proteins were identified in MSCs and 1,927 proteins in MSC derived exosomes, representing to our knowledge the first time these proteomes have been probed comprehensively. Multilayered analyses identified several putative paracrine effectors of angiogenesis present in MSC exosomes and increased in expression in MSCs exposed to ischemic tissue-simulated conditions; these include platelet derived growth factor, epidermal growth factor, fibroblast growth factor, and most notably nuclear factor-kappaB (NFkB) signaling pathway proteins. NFkB signaling was identified as a key mediator of MSC exosome induced angiogenesis in endothelial cells by functional in vitro validation using a specific inhibitor. Collectively, the results of our proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue-related diseases.

Journal ArticleDOI
TL;DR: This review, which dissects the process in several isolated steps such as angiogenesis, hypoxia, circulation, and establishment of a metastatic focus, finds that several of these processes overlap and occur even simultaneously, but such a presentation would be unreadable.
Abstract: Metastasis in lung cancer is a multifaceted process. In this review, we will dissect the process in several isolated steps such as angiogenesis, hypoxia, circulation, and establishment of a metastatic focus. In reality, several of these processes overlap and occur even simultaneously, but such a presentation would be unreadable. Metastasis requires cell migration toward higher oxygen tension, which is based on changing the structure of the cell (epithelial-mesenchymal transition), orientation within the stroma and stroma interaction, and communication with the immune system to avoid attack. Once in the blood stream, cells have to survive trapping by the coagulation system, to survive shear stress in small blood vessels, and to find the right location for extravasation. Once outside in the metastatic locus, tumor cells have to learn the communication with the “foreign” stroma cells to establish vascular supply and again express molecules, which induce immune tolerance.

Journal ArticleDOI
TL;DR: It is demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by enhancing angiogenesis and osteogenesis in an ovariectomized rat model.
Abstract: Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by enhancing angiogenesis and osteogenesis in an ovariectomized rat model.

Journal ArticleDOI
TL;DR: Polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and should be considered as safe and effective approaches in cancer prevention and therapy.
Abstract: Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. The presence of vitamin C, amino acids and other micronutrients could enhance inhibitory effect of epigallocatechin gallate (EGCG) on secretion of MMPs. In addition, enrichment of NM with quercetin (EPQ mix) enhanced anticancer activity of NM in vivo. In conclusion, polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and should be considered as safe and effective approaches in cancer prevention and therapy.

Journal ArticleDOI
TL;DR: It is proved that the anti-tumor effect of mTOR inhibitors is partly countered by the deleterious outcome of these drugs on TAMs, providing a functional link between TAM metabolism and tumor angiogenesis.

Journal ArticleDOI
18 Feb 2016-Oncogene
TL;DR: The current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression is reviewed and its therapeutic implications are discussed.
Abstract: Increasing evidence indicates that the tumor microenvironment has critical roles in all aspects of cancer biology, including growth, angiogenesis, metastasis and progression. Although chemokines and their receptors were originally identified as mediators of inflammatory diseases, it is being increasingly recognized that they serve as critical communication bridges between tumor cells and stromal cells to create a permissive microenvironment for tumor growth and metastasis. Thus, an important therapeutic strategy for cancer is to break this communication channel and isolate tumor cells for long-term elimination. Cytokine CXCL12 (also known as stromal-derived factor 1α) and its receptor CXCR4 represent the most promising actionable targets for this strategy. Both are overexpressed in various cancer types, and this aberrant expression strongly promotes proliferation, migration and invasion through multiple signal pathways. Several molecules that target CXCL12 or CXCR4 have been developed to interfere with tumor growth and metastasis. In this article, we review our current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression and discuss its therapeutic implications.

Journal ArticleDOI
21 Apr 2016-Nature
TL;DR: It is shown that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor.
Abstract: Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.

Journal ArticleDOI
TL;DR: The regulation and role of hypoxia and its key transcriptional mediators, the Hypoxia-inducible factor (HIF) family of transcription factors, in the tumour microenvironment and stromal compartments are discussed.
Abstract: Low oxygen tension (hypoxia) is a hallmark of cancer that influences cancer cell function, but is also an important component of the tumour microenvironment as it alters the extracellular matrix, modulates the tumour immune response and increases angiogenesis. Here we discuss the regulation and role of hypoxia and its key transcriptional mediators, the hypoxia-inducible factor (HIF) family of transcription factors, in the tumour microenvironment and stromal compartments.

Journal ArticleDOI
TL;DR: It is shown that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases, and combined inhibition of angiogenesis and vesselco-option might be a warranted therapeutic strategy.
Abstract: The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy.

Journal ArticleDOI
TL;DR: A careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.
Abstract: The role of tumor-associated macrophages (TAMs) in cancer is often correlated with poor prognosis, even though this statement should be interpreted with care, as the effects of macrophages primarily depend on their localization within the tumor. This versatile cell type orchestrates a broad spectrum of biological functions and exerts very complex and even opposing functions on cell death, immune stimulation or suppression, and angiogenesis, resulting in an overall pro- or antitumoral effect. We are only beginning to understand the environmental cues that contribute to transient retention of macrophages in a specific phenotype. It has become clear that hypoxia shapes and induces specific macrophage phenotypes that serve tumor malignancy, as hypoxia promotes immune evasion, angiogenesis, tumor cell survival, and metastatic dissemination. Additionally, TAMs in the hypoxic niches within the tumor are known to mediate resistance to several anticancer treatments and to promote cancer relapse. Thus, a careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.

Journal ArticleDOI
TL;DR: Both the selective reduction of inflammation and the selective Reduction of angiogenesis have now been suggested as ways to improve scarring, linking excessive inflammation and a dense but poorly perfused capillary bed to inferior healing outcomes.
Abstract: All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.

Journal ArticleDOI
01 May 2016-Oncogene
TL;DR: It is demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients, and the inhibition of A XL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.
Abstract: Antiangiogenic therapy resistance occurs frequently in patients with metastatic renal cell carcinoma (RCC). The purpose of this study was to understand the mechanism of resistance to sunitinib, an antiangiogenic small molecule, and to exploit this mechanism therapeutically. We hypothesized that sunitinib-induced upregulation of the prometastatic MET and AXL receptors is associated with resistance to sunitinib and with more aggressive tumor behavior. In the present study, tissue microarrays containing sunitinib-treated and untreated RCC tissues were stained with MET and AXL antibodies. The low malignant RCC cell line 786-O was chronically treated with sunitinib and assayed for AXL, MET, epithelial-mesenchymal transition (EMT) protein expression and activation. Co-culture experiments were used to examine the effect of sunitinib pretreatment on endothelial cell growth. The effects of AXL and MET were evaluated in various cell-based models by short hairpin RNA or inhibition by cabozantinib, the multi-tyrosine kinases inhibitor that targets vascular endothelial growth factor receptor, MET and AXL. Xenograft mouse models tested the ability of cabozantinib to rescue sunitinib resistance. We demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients. Chronic sunitinib treatment of RCC cell lines activated both AXL and MET, induced EMT-associated gene expression changes, including upregulation of Snail and β-catenin, and increased cell migration and invasion. Pretreatment with sunitinib enhanced angiogenesis in 786-0/human umbilical vein endothelial cell co-culture models. The suppression of AXL or MET expression and the inhibition of AXL and MET activation using cabozantinib both impaired chronic sunitinib treatment-induced prometastatic behavior in cell culture and rescued acquired resistance to sunitinib in xenograft models. In summary, chronic sunitinib treatment induces the activation of AXL and MET signaling and promotes prometastatic behavior and angiogenesis. The inhibition of AXL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.

Journal ArticleDOI
TL;DR: The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment.
Abstract: Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.

Journal ArticleDOI
TL;DR: This work has developed the first comprehensive map of endothelial cell-specific signaling events of VEGFA/VEGFR2 system pertaining to angiogenesis and believes that this map would serve as a novel platform for reference, integration, and representation and more significantly, the progressive analysis of dynamic features of V EGF signaling in endothelial cells including their cross-talks with other ligand-receptor systems involved inAngiogenesis.
Abstract: Vascular endothelial growth factor-A (VEGF-A) is essential for endothelial cell functions associated with angiogenesis. Signal transduction networks initiated by VEGFA/VEGFR2, the most prominent ligand-receptor complex in the VEGF system, leads to endothelial cell proliferation, migration, survival and new vessel formation involved in angiogenesis. Considering its biomedical importance, we have developed the first comprehensive map of endothelial cell-specific signaling events of VEGFA/VEGFR2 system pertaining to angiogenesis. Screening over 20,000 published research articles and following the post-translational modification (PTM) and site specificity of VEGFR2, we have documented 240 proteins and their diverse PTM-dependent reactions involved in VEGFA/VEGFR2 signal transduction. From the ligand-receptor complex, this map has been extended to the level of major transcriptionally regulated genes for which the signaling cascades leading to their transcription factors are reported. We believe that this map would serve as a novel platform for reference, integration, and representation and more significantly, the progressive analysis of dynamic features of VEGF signaling in endothelial cells including their cross-talks with other ligand-receptor systems involved in angiogenesis.

Journal ArticleDOI
14 Apr 2016-Nature
TL;DR: It is found that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor, and ultimately the loss of a key redox effector, APE1.
Abstract: Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.

Journal ArticleDOI
TL;DR: It is proposed that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system.
Abstract: While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system.

Journal ArticleDOI
TL;DR: It is established that simultaneous Tie2 activation and Ang2 inhibition form a powerful therapeutic strategy to elicit a favorable tumor microenvironment and enhanced delivery of a chemotherapeutic agent into tumors.

Journal ArticleDOI
TL;DR: It is suggested that angiogenesis and inflammation act interdependently during the development of DME, and diagnosing the physiopathology of each patient with DME will help to select the most effective drug.
Abstract: Diabetic macular edema (DME) can cause blindness in diabetic patients suffering from diabetic retinopathy (DR). DM parameters controls (glycemia, arterial tension, and lipids) are the gold standard for preventing DR and DME. Although the vascular endothelial growth factor (VEGF) is known to play a role in the development of DME, the pathological processes leading to the onset of this disease are highly complex and the exact sequence in which they occur is still not completely understood. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. However, it still remains to be clarified whether angiogenesis following VEGF overexpression is a cause or a consequence of inflammation. This paper provides a review of the data currently available, focusing on VEGF, angiogenesis, and inflammation. Our analysis suggests that angiogenesis and inflammation act interdependently during the development of DME. Knowledge of DME etiology seems to be important in treatments with anti-VEGF or anti-inflammatory drugs. Current diagnostic techniques do not permit us to differentiate between both etiologies. In the future, diagnosing the physiopathology of each patient with DME will help us to select the most effective drug.