scispace - formally typeset
Search or ask a question
Topic

Angiogenesis

About: Angiogenesis is a research topic. Over the lifetime, 58248 publications have been published within this topic receiving 3290129 citations. The topic is also known as: blood vessel formation from pre-existing blood vessels & GO:0001525.


Papers
More filters
Journal ArticleDOI
TL;DR: The female reproductive system provides a unique model for studying regulation of angiogenesis during growth and differentiation of normal adult tissues, and the current state of knowledge regarding angiogenic processes and their regulation in female reproductive tissues is discussed.
Abstract: In adult tissues, capillary growth (angiogenesis) occurs normally during tissue repair, such as in healing of wounds and fractures. Rampant capillary growth is associated with various pathological conditions, including tumor growth, retinopathies, hemangiomas, fibroses and rheumatoid arthritis. The female reproductive organs (i.e., ovary, uterus, and placenta) exhibit dynamic, periodic growth and regression accompanied by equally dramatic changes in rates of blood flow. It is not surprising, therefore, that they are some of the few adult tissues in which angiogenesis occurs as a normal process. Thus, the female reproductive system provides a unique model for studying regulation of angiogenesis during growth and differentiation of normal adult tissues. Ovarian, uterine, and placental tissues recently have been shown to contain and produce angiogenic and anti-angiogenic factors. This review discusses the current state of knowledge regarding angiogenic processes and their regulation in female reproductive tissues. In addition, implications of this research for regulation of fertility as well as for control of angiogenesis in other normal and pathological processes are discussed.

442 citations

Journal Article
TL;DR: Experiments indicate that therapeutic strategies targeting EGF-R have a significant antitumor effect on human L3.6pl pancreatic carcinoma growing in nude mice which is mediated in part by inhibition of tumor-induced angiogenesis, leading to tumor cell apoptosis and regression.
Abstract: Both epidermal growth factor receptor (EGF-R) signaling mechanisms and angiogenesis have been evaluated as independent targets for therapy of human pancreatic carcinoma, but a link between the two processes has been identified only recently. This study evaluated whether EGF-R blockade therapy with anti-EGF-R antibody C225 inhibits pancreatic carcinoma growth and metastasis in an orthotopic nude mouse model via tumor-mediated angiogenesis and whether gemcitabine potentiates this effect. In vitro treatment of human pancreatic carcinoma L3.6pl cells with C225 inhibited EGF-R autophosphorylation, producing a maximum of 20% cytostasis. Treatment with C225 plus gemcitabine resulted in additive cytotoxic effects that increased with increasing gemcitabine concentrations. Dose-dependent decreases in expression of the angiogenic factors vascular endothelial growth factor and interleukin 8 (but not basic fibroblast growth factor) were observed in the C225-treated cells (mRNA and protein levels). In L3.6pl tumors established in the pancreas of nude mice, systemic therapy with C225 alone and C225 in combination with gemcitabine resulted in growth inhibition, tumor regression, and abrogation of metastasis; median tumor volume was reduced from 538 to 0.3 and to 0 mm3, respectively. Gemcitabine treatment alone reduced median tumor volume from 538 to 152 mm3. Liver metastases were present in 50% of the controls, 30% of the gemcitabine-treated animals, and 20% of C225-treated animals. No macroscopically visible liver metastases were observed in the combination treatment group. As early as 11 days after C225 treatment, the median percentage of proliferating cell nuclear antigen-positive cells was substantially reduced compared with gemcitabine treatment alone (26% versus 73%, respectively) versus controls (92%), correlating with in vivo blockade of EGF-R activation. Similarly after 11 days treatment, production of vascular endothelial growth factor and interleukin 8 was significantly lower in C225 and C225 plus gemcitabine-treated tumors versus gemcitabine-treated and control tumors. Significant differences in microvessel density were observed 18 days after C225 or combination treatments (but not gemcitabine alone) in direct correlation with the difference in percentage of apoptotic endothelial cells, as visualized by double immunofluorescence microscopy. These experiments indicate that therapeutic strategies targeting EGF-R have a significant antitumor effect on human L3.6pl pancreatic carcinoma growing in nude mice which is mediated in part by inhibition of tumor-induced angiogenesis, leading to tumor cell apoptosis and regression. Furthermore, this effect is potentiated in combination with gemcitabine.

442 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the biology and effects of VEGFs as well as the current status of clinical applications and future perspectives of the therapeutic use of vascular endothelial growth factor (VEGF) in cardiovascular medicine.

442 citations

Journal ArticleDOI
TL;DR: Understanding of the different molecular and functional aspects of these two different processes, in particular, the self-limitation of the trophoblastic invasion and vessels formation during gestation might allow the establishment of new therapeutic strategies for the treatment of both tumor and pregnancy related pathology.

441 citations

Book ChapterDOI
TL;DR: This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of C XCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CxCR4 expression.
Abstract: Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor–stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.

441 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
91% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Receptor
159.3K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,761
20225,433
20212,598
20202,542
20192,517