scispace - formally typeset
Search or ask a question
Topic

Angiogenesis

About: Angiogenesis is a research topic. Over the lifetime, 58248 publications have been published within this topic receiving 3290129 citations. The topic is also known as: blood vessel formation from pre-existing blood vessels & GO:0001525.


Papers
More filters
Journal ArticleDOI
TL;DR: This is the first clinical demonstration showing that lineage-committed EPCs and MNCCD34+, their putative precursors, are mobilized during an acute ischemic event in humans.
Abstract: Background—Endothelial progenitor cells (EPCs) circulate in adult peripheral blood (PB) and contribute to neovascularization. However, little is known regarding whether EPCs and their putative precursor, CD34-positive mononuclear cells (MNCCD34+), are mobilized into PB in acute ischemic events in humans. Methods and Results—Flow cytometry revealed that circulating MNCCD34+ counts significantly increased in patients with acute myocardial infarction (n=16), peaking on day 7 after onset, whereas they were unchanged in control subjects (n=8) who had no evidence of cardiac ischemia. During culture, PB-MNCs formed multiple cell clusters, and EPC-like attaching cells with endothelial cell lineage markers (CD31, vascular endothelial cadherin, and kinase insert domain receptor) sprouted from clusters. In patients with acute myocardial infarction, more cell clusters and EPCs developed from cultured PB-MNCs obtained on day 7 than those on day 1. Plasma levels of vascular endothelial growth factor significantly incre...

1,189 citations

Journal ArticleDOI
26 Jun 2009-Science
TL;DR: It is shown that themiR-17~92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis) and may serve as a valuable therapeutic target in the setting of ischemic disease.
Abstract: MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17approximately92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.

1,188 citations

Journal ArticleDOI
TL;DR: Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature ofThalidomid-treated embryos, which shed light on the mechanism of the teratogenicity of the drug.
Abstract: Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.

1,187 citations

Journal ArticleDOI
27 Mar 2002-Oncogene
TL;DR: It is shown that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines and indicates that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.
Abstract: Non-receptor and receptor tyrosine kinases, such as Src and EGF receptor (EGFR), are major inducers of vascular endothelial growth factor (VEGF), one of the most potent mediators of angiogenesis. While tyrosine kinases signal through multiple pathways, signal transducer and activation of transcription 3 (Stat3) is a point of convergence for many of these and is constitutively activated with high frequency in a wide range of cancer cells. Here, we show that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines. An activated Stat3 mutant (Stat3C) up-regulates VEGF expression and stimulates tumor angiogenesis. Stat3C-induced VEGF up-regulation is abrogated when a Stat3-binding site in the VEGF promoter is mutated. Furthermore, interrupting Stat3 signaling with dominant-negative Stat3 protein or Stat3 antisense oligonucleotide in tumor cells down-regulates VEGF expression. Consistent with an important role of Stat3 in VEGF up-regulation induced by various oncogenic tyrosine kinases, v-Src-mediated VEGF expression is inhibited when Stat3 signaling is blocked. Moreover, chromatin immunoprecipitation assays indicate that Stat3 protein binds to the VEGF promoter in vivo and mutation of a Stat3-binding site in the VEGF promoter abrogates v-Src-induced VEGF promoter activity. These studies provide evidence that the VEGF gene is regulated directly by Stat3 protein, and indicate that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.

1,171 citations

Journal ArticleDOI
01 Dec 2000
TL;DR: Wound angiogenesis appears to be regulated by endothelial cell interaction with the specific three-dimensional ECM environment in the wound space, and mRNA levels of alpha(v)beta3 in human dermal microvascular endothelial cells either plated on fibronectin or overlaid by fibrin gel were higher than in cells plating on collagen or overlaying by collagen gel.
Abstract: During wound healing, angiogenic capillary sprouts invade the fibrin/fibronectin-rich wound clot and within a few days organize into a microvascular network throughout the granulation tissue. As collagen accumulates in the granulation tissue to produce scar, the density of blood vessels diminishes. A dynamic interaction occurs among endothelial cells, angiogenic cytokines, such as FGF, VEGF, TGF-β, angiopoietin, and mast cell tryptase, and the extracellular matrix (ECM) environment. Specific endothelial cell ECM receptors are critical for these morphogenetic changes in blood vessels during wound repair. In particular, αvβ3, the integrin receptor for fibrin and fibronectin, appears to be required for wound angiogenesis: αvβ3 is expressed on the tips of angiogenic capillary sprouts invading the wound clot, and functional inhibitors of αvβ3 transiently inhibit granulation tissue formation. Recent investigations have shown that the wound ECM can regulate angiogenesis in part by modulating integrin receptor expression. mRNA levels of αvβ3 in human dermal microvascular endothelial cells either plated on fibronectin or overlaid by fibrin gel were higher than in cells plated on collagen or overlaid by collagen gel. Wound angiogenesis also appears to be regulated by endothelial cell interaction with the specific three-dimensional ECM environment in the wound space. In an in vitro model of human sprout angiogenesis, three-dimensional fibrin gel, simulating early wound clot, but not collagen gel, simulating late granulation tissue, supported capillary sprout formation. Understanding the molecular mechanisms that regulate wound angiogenesis, particularly how ECM modulates ECM receptor and angiogenic factor requirements, may provide new approaches for treating chronic wounds.

1,162 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
91% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Receptor
159.3K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,761
20225,433
20212,598
20202,542
20192,517