scispace - formally typeset
Search or ask a question
Topic

Angiogenesis

About: Angiogenesis is a research topic. Over the lifetime, 58248 publications have been published within this topic receiving 3290129 citations. The topic is also known as: blood vessel formation from pre-existing blood vessels & GO:0001525.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that human bone marrow-derived mesenchymal stem cells exposed to tumor-conditioned medium (TCM) over a prolonged period of time assume a CAF-like myofibroblastic phenotype, which suggests that hMSCs are a source of CAFs and can be used in the modeling of tumor-stroma interactions.
Abstract: Carcinoma-associated fibroblasts (CAF) have recently been implicated in important aspects of epithelial solid tumor biology, such as neoplastic progression, tumor growth, angiogenesis, and metastasis. However, neither the source of CAFs nor the differences between CAFs and fibroblasts from nonneoplastic tissue have been well defined. In this study, we show that human bone marrow–derived mesenchymal stem cells (hMSCs) exposed to tumor-conditioned medium (TCM) over a prolonged period of time assume a CAF-like myofibroblastic phenotype. More importantly, these cells exhibit functional properties of CAFs, including sustained expression of stromal-derived factor-1 (SDF-1) and the ability to promote tumor cell growth both in vitro and in an in vivo coimplantation model, and expression of myofibroblast markers, including α-smooth muscle actin and fibroblast surface protein. hMSCs induced to differentiate to a myofibroblast-like phenotype using 5-azacytidine do not promote tumor cell growth as efficiently as hMSCs cultured in TCM nor do they show increased SDF-1 expression. Furthermore, gene expression profiling revealed similarities between TCM-exposed hMSCs and CAFs. Taken together, these data suggest that hMSCs are a source of CAFs and can be used in the modeling of tumor-stroma interactions. To our knowledge, this is the first report showing that hMSCs become activated and resemble carcinoma-associated myofibroblasts on prolonged exposure to conditioned medium from MDAMB231 human breast cancer cells. [Cancer Res 2008;68(11):4331–9]

807 citations

Journal ArticleDOI
17 Mar 1994-Nature
TL;DR: It is reported that 2-methoxyoestradiol, an endogenous oestrogen metabolite of previously unknown function, is a potent inhibitor of endothelial cell proliferation and migration as well as angiogenesis in vitro.
Abstract: The formation of new blood vessels (angiogenesis) is critical for the growth of tumours and is a dominant feature in various angiogenic diseases such as diabetic retinopathy, arthritis, haemangiomas and psoriasis. Recognition of the potential therapeutic benefits of controlling pathological angiogenesis has led to a search for angiogenesis inhibitors. Here we report that 2-methoxyoestradiol, an endogenous oestrogen metabolite of previously unknown function, is a potent inhibitor of endothelial cell proliferation and migration as well as angiogenesis in vitro. Moreover, when administered orally in mice, it strongly inhibits the neovascularization of solid tumors and suppresses their growth. Unlike the angiostatic steroids of corticoid structure, it does not require the co-administration of heparin or sulphated cyclodextrins for activity. Thus, 2-methoxyoestradiol is the first steroid to have high antiangiogenic activity by itself. Our results suggest that this compound may have therapeutic potential in cancer and other angiogenic diseases.

806 citations

Journal ArticleDOI
TL;DR: Evidence is provided that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1 α, and this has significant implications for understanding the hypoxic tumour phenotype.
Abstract: Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.

805 citations

Journal ArticleDOI
01 Apr 2003-Blood
TL;DR: A novel role for IL-17 is revealed as a CD4 T-cell-derived mediator of angiogenesis that stimulates vascular endothelial cell migration and cord formation and regulates production of a variety of proangiogenic factors.

804 citations

Journal ArticleDOI
20 Sep 1999-Oncogene
TL;DR: In tumors, Angiopoietin-2 and VEGF seem to reprise the roles they play during vascular remodeling in normal tissues, acting to regulate the previously underappreciated balance between vascular regression and growth.
Abstract: Our analyses in several different tumor settings challenge the prevailing view that malignancies and metastases generally initiate as avascular masses that only belatedly induce vascular support. Instead, we find that malignant cells rapidly co-opt existing host vessels to form an initially well-vascularized tumor mass. Paradoxically, the co-opted vasculature does not undergo angiogenesis to support the growing tumor, but instead regresses (perhaps as part of a normal host defense mechanism) via a process that involves disruption of endothelial cell/smooth muscle cell interactions and endothelial cell apoptosis. This vessel regression in turn results in necrosis within the central part of the tumor. However, robust angiogenesis is initiated at the tumor margin, rescuing the surviving tumor and supporting further growth. The expression patterns of Angiopoietin-2 (the natural antagonist for the angiogenic Tie2 receptor) and vascular endothelial growth factor (VEGF) strongly implicate these factors in the above processes. Angiopoietin-2 is highly induced in co-opted vessels, prior to VEGF induction in the adjacent tumor cells, providing perhaps the earliest marker of tumor vasculature and apparently marking the co-opted vessels for regression. Subsequently, VEGF upregulation coincident with Angiopoietin-2 expression at the tumor periphery is associated with robust angiogenesis. Thus, in tumors, Angiopoietin-2 and VEGF seem to reprise the roles they play during vascular remodeling in normal tissues, acting to regulate the previously underappreciated balance between vascular regression and growth.

802 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
91% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Receptor
159.3K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,761
20225,433
20212,598
20202,542
20192,517