scispace - formally typeset
Search or ask a question
Topic

Angiogenesis

About: Angiogenesis is a research topic. Over the lifetime, 58248 publications have been published within this topic receiving 3290129 citations. The topic is also known as: blood vessel formation from pre-existing blood vessels & GO:0001525.


Papers
More filters
Journal ArticleDOI
TL;DR: The present article highlights the role of various proinflammatory mediators in carcinogenesis and their promise as potential targets for chemoprevention of inflammation-associated carcinogenesis.
Abstract: Chronic inflammation plays a multifaceted role in carcinogenesis. Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. The possible mechanisms by which inflammation can contribute to carcinogenesis include induction of genomic instability, alterations in epigenetic events and subsequent inappropriate gene expression, enhanced proliferation of initiated cells, resistance to apoptosis, aggressive tumor neovascularization, invasion through tumor-associated basement membrane and metastasis, etc. Inflammation-induced reactive oxygen and nitrogen species cause damage to important cellular components (e.g., DNA, proteins and lipids), which can directly or indirectly contribute to malignant cell transformation. Overexpression, elevated secretion, or abnormal activation of proinflammatory mediators, such as cytokines, chemokines, cyclooxygenase-2, prostaglandins, inducible nitric oxide synthase, and nitric oxide, and a distinct network of intracellular signaling molecules including upstream kinases and transcription factors facilitate tumor promotion and progression. While inflammation promotes development of cancer, components of the tumor microenvironment, such as tumor cells, stromal cells in surrounding tissue and infiltrated inflammatory/immune cells generate an intratumoral inflammatory state by aberrant expression or activation of some proinflammatory molecules. Many of proinflammatory mediators, especially cytokines, chemokines and prostaglandins, turn on the angiogenic switches mainly controlled by vascular endothelial growth factor, thereby inducing inflammatory angiogenesis and tumor cell-stroma communication. This will end up with tumor angiogenesis, metastasis and invasion. Moreover, cellular microRNAs are emerging as a potential link between inflammation and cancer. The present article highlights the role of various proinflammatory mediators in carcinogenesis and their promise as potential targets for chemoprevention of inflammation-associated carcinogenesis.

762 citations

Journal ArticleDOI
30 Oct 1998-Cell
TL;DR: A PA-independent fibrinolytic pathway wherein tethered MMPs function as pericellularfibrinolysins during the neovascularization process is identified.

761 citations

Journal ArticleDOI
01 Jan 1987-Nature
TL;DR: It is concluded that basic fibroblast growth factor (bFGF) can act as a self-stimulating growth factor for capillary endothelial cells, and that it is possible that the formation of new capillaries is induced by capillary vascularized cells themselves.
Abstract: Angiogenesis, the formation of new capillaries, which is observed in embryonic and injured tissue and is particularly prominent in the vicinity of solid tumours1, involves the migration and proliferation of capillary endothelial cells. It is probably triggered by agents, such as basic fibroblast growth factor (bFGF), thought to be released from tissues adjacent to proliferating capillaries1. As well as being a potent inducer of cell division in capillary endothelial cells in vitro, bFGF can act as an angiogenic agent in vivo2. It is present in a wide variety of richly vascularized tissues including brain, pituitary, retina, adrenal gland, kidney, corpus luteum, placenta and various tumours1–3. So far, however, the normal bFGF-producing cell species in these tissues have not been identified2,4. We report here that capillary endothelial cells express the bFGF gene, that they produce and release bFGF and that bFGF derived from them can stimulate the proliferation of capillary endothelial cells. We conclude that bFGF can act as a self-stimulating growth factor for capillary endothelial cells, and that it is possible that the formation of new capillaries is induced by capillary endothelial cells themselves.

758 citations

Journal ArticleDOI
TL;DR: It is suggested that empty sleeves of basement membrane and accompanying pericytes provide a scaffold for rapid revascularization of tumors after removal of anti-VEGF therapy and highlight their importance as potential targets in cancer therapy.
Abstract: Inhibitors of VEGF signaling can block angiogenesis and reduce tumor vascularity, but little is known about the reversibility of these changes after treatment ends. In the present study, regrowth of blood vessels in spontaneous RIP-Tag2 tumors and implanted Lewis lung carcinomas in mice was assessed after inhibition of VEGF receptor signaling by AG-013736 or AG-028262 for 7 days. Both agents caused loss of 50%-60% of tumor vasculature. Empty sleeves of basement membrane were left behind. Pericytes also survived but had less alpha-SMA immunoreactivity. One day after drug withdrawal, endothelial sprouts grew into empty sleeves of basement membrane. Vessel patency and connection to the bloodstream followed close behind. By 7 days, tumors were fully revascularized, and the pericyte phenotype returned to baseline. Importantly, the regrown vasculature regressed as much during a second treatment as it did in the first. Inhibition of MMPs or targeting of type IV collagen cryptic sites by antibody HUIV26 did not eliminate the sleeves or slow revascularization. These results suggest that empty sleeves of basement membrane and accompanying pericytes provide a scaffold for rapid revascularization of tumors after removal of anti-VEGF therapy and highlight their importance as potential targets in cancer therapy.

757 citations

Journal ArticleDOI
TL;DR: Clinical studies using EPCs for neovascularization have just been started; however, the mechanisms stimulating or inhibiting the differentiation of EPC in vivo and the signals causing their migration and homing to sites of injured endothelium or extravascular tissue are largely unknown at present.
Abstract: Postnatal bone marrow contains a subtype of progenitor cells that have the capacity to migrate to the peripheral circulation and to differentiate into mature endothelial cells. Therefore, these cells have been termed endothelial progenitor cells (EPCs). The isolation of EPCs by adherence culture or magnetic microbeads has been described. In general, EPCs are characterized by the expression of 3 markers, CD133, CD34, and the vascular endothelial growth factor receptor-2. During differentiation, EPCs obviously lose CD133 and start to express CD31, vascular endothelial cadherin, and von Willebrand factor. EPCs seem to participate in endothelial repair and neovascularization of ischemic organs. Clinical studies using EPCs for neovascularization have just been started; however, the mechanisms stimulating or inhibiting the differentiation of EPC in vivo and the signals causing their migration and homing to sites of injured endothelium or extravascular tissue are largely unknown at present. Thus, future studies will help to explore areas of potential basic research and clinical application of EPCs.

756 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
91% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Receptor
159.3K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20234,761
20225,433
20212,598
20202,542
20192,517