scispace - formally typeset
Search or ask a question
Topic

Ankerite

About: Ankerite is a research topic. Over the lifetime, 859 publications have been published within this topic receiving 23960 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Ferrocarbonatite dykes cut Archaean-Proterozoic basement at Swartbooisdrif, adjacent to the NW Namibia-Angola border.
Abstract: Although general accounts of carbonatites usually envisage Ca–Mg carbonate melts evolving by fractional crystallisation to Fe-rich residua, there is longstanding concern that ferrocarbonatites may actually be products of hydrothermal rather than magmatic processes. All previously published examples of ankerite- and/or siderite-carbonatites fail to show one or more of the isotopic criteria (all determined on the same sample) thought to be diagnostic of crystallised magmatic carbonate liquids. Ferrocarbonatite dykes cut Archaean-Proterozoic basement at Swartbooisdrif, adjacent to the NW Namibia-Angola border. Their age is uncertain but probably ~1,100 Ma and their associated fenites are rich in sodalite. Where unaffected by subsequent recrystallisation, their petrographic textures resemble those of silicate layered intrusions; ankerite, magnetite and occasionally calcite are cumulus phases, joined by trace amounts of intercumulus pyrochlore. Ankerite is zoned, from Ca(Mg, Fe2+)(CO3)2 cores towards ferroan dolomite rims. Calcite contains ~1.7% SrO, plus abundant, tiny exsolved strontianite grains. Magnetite is close to pure Fe3O4. Pyrochlore has fine-scale euhedral oscillatory zoning and light-REE-enriched rims. ICP-MS analysis of magnetite and pyrochlore from the carbonatite allows calculation of their modal amounts from mass-balance considerations. Sodalite from the fenite is REE poor. Geothermometry, using either the calcite-dolomite solvus or oxygen isotope fractionation between calcite and magnetite, gives temperatures in the range 420–460 °C. Initial Sr, Nd and Pb isotopic ratios of the ferrocarbonatites (87Sr/86Sr=0.7033; eNd=0.2–1.0; 206Pb/204Pb=16.37; 207Pb/204Pb=15.42; 208Pb/204Pb=36.01) are appropriate for an ~1,100-Ma magmatic carbonatite. Likewise, carbonate δ18O=8.0 and δ13C=–7.36 indicate little or no subsequent shift from magmatic values. It appears that dense ankerite and magnetite dominated crystal accumulation from a melt saturated in these phases, plus calcite and pyrochlore, with prior fractionation of a silicate mineral and apatite. The resulting ferrocarbonatite lacks a silicate mineral (excluding fenite xenocrysts) and apatite. It has unusually low (basalt-like) REE abundances and (La/Lu)n, and low concentrations of Ba, Rb, U, Th, Nb, Ta, Zr and Hf. Very high Nb/Ta and low Zr/Hf imply that the evolution of the parental magma involved immiscible separation of a carbonate from a silicate melt. The sodalite-dominated Swartbooisdrif fenites suggest that the parental melt also had a substantial Na content, in contrast with the ferrocarbonatite rock.

60 citations

Journal ArticleDOI
TL;DR: The Hirabayashi borehole (Awaji Island, Japan) was used by the Geological Survey of Japan (GSJ) 1 year after the Hyogo-ken Nanbu (Kobe) earthquake (1995, MJMA=7.2) as mentioned in this paper.

59 citations

Journal ArticleDOI
TL;DR: In this article, the ages of Indian carbonatites are still controversial, and the results of the analysis of carbonatite-alkalic complexes of Newania (NW India, Rajasthan State) and Sevattur (SW India, Tamil Nadu State) are presented.

58 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that any iron carbonate, siderite, ankerite, or ferroan dolomite, may readily oxidize in air to maghemite or hematite, thus producing a spurious remanent moment (RM) that can dominate the magnetic properties of the specimen.
Abstract: Magnetic, Mossbauer effect, and thermal properties have been evaluated for specimens of the mineral ankerite and are contrasted with similar measurements reported for the mineral siderite to determine if ankerite (and ferroan dolomite), like siderite, may be important in paleomagnetism as a producer of secondary, spurious remanent moments as the result of oxidation in air. Our data indicate that ankerite and siderite both have comparable thermal stabilities and that ankerite does break down to form iron oxides at temperatures as low as 250°C during thermal demagnetization. We conclude from our data that any iron carbonate, siderite, ankerite, or ferroan dolomite, may readily oxidize in air to maghemite or hematite thus producing a spurious remanent moment (RM) that can dominate the magnetic properties of the specimen. Thermal demagnetization of ankerite or siderite at lower temperatures (below 250°C) does not appear to produce such a spurious RM. As might be expected, the quantity of secondary iron oxides produced by oxidation is limited by the iron content in the carbonate crystal lattice. Oxidized siderite produces significantly greater amounts of iron oxides than equivalent percentages of ankerite, which in turn produces more iron oxides than equal amounts of ferroan dolomite in a given sample.

57 citations

Journal ArticleDOI
TL;DR: A comprehensive study of fluid bubbles trapped inside glassy melt inclusions in primitive olivine phenocrysts and pillow-rim glasses from basaltic magmas from different tectonic environments, including mid-ocean ridges (Macquarie Island, SW Pacific and Mid-Atlantic Ridge 43°N Fracture Zone), ocean islands (Hawaii) and a variety of modern and ancient backarc-island arc settings (eastern Manus Basin, Okinawa and Vanuatu Troughs, Troodos, New Caledonia and Hunter Ridge-Hunter

57 citations


Network Information
Related Topics (5)
Zircon
23.7K papers, 786.6K citations
84% related
Sedimentary rock
30.3K papers, 746.5K citations
84% related
Carbonate
34.8K papers, 802.6K citations
80% related
Basalt
18.6K papers, 805.1K citations
79% related
Continental crust
11.1K papers, 677.5K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202270
202140
202027
201946
201842