scispace - formally typeset
Search or ask a question
Topic

Ankerite

About: Ankerite is a research topic. Over the lifetime, 859 publications have been published within this topic receiving 23960 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors studied the reservoir potential of the Kashafrud Formation sandstones using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.

38 citations

Journal ArticleDOI
TL;DR: The Diyanqinamu porphyry Mo deposit in the southern Greater Khingan Range of the Central Asian orogenic belt contains 800 million metric tons (Mt) of ore with an average grade of 0.097% molybdenum as discussed by the authors.
Abstract: The Diyanqinamu porphyry Mo deposit in the southern Greater Khingan Range of the Central Asian orogenic belt contains 800 million metric tons (Mt) of ore with an average grade of 0.097% molybdenum. The deposit is hosted in Late Jurassic volcanic rocks of tuff, andesite, and volcanic breccia. Multiple-stage hydrothermal activities have resulted in propylitic, phyllic, and argillic alteration in this deposit. Five stages (I–V) of hydrothermal activity are identified. Stage I is represented by a mineral assemblage of epidote, chlorite, and magnetite, with some discontinuous barren veinlets of quartz + K-feldspar ± fluorite ± magnetite ± epidote ± chlorite. Stage II is marked by occurrence of quartz + fluorite + molybdenite + magnetite ± pyrite ± sericite ± siderite veinlets/veins with phyllic halos. Stage III consists of fluorite + siderite + quartz + molybdenite + pyrite ± ankerite ± calcite ± chalcopyrite veins that are commonly related to phyllic alteration and dissemination of fluorite in the altered rocks. Stage IV has an assemblage of fluorite + quartz + pyrite ± ankerite ± calcite ± molybdenite ± chalcopyrite ± sphalerite ± galena in coarse veins (10–20 mm wide). Stage V consists of narrow (≤5-mm wide) veinlets of calcite + fluorite + pyrite ± quartz. Molybdenite mainly occurs in Stages II and III. Re-Os dating results for molybdenite samples from these two stages yielded an isochron age of 156.2 ± 4.2 Ma (2 σ , MSWD = 0.96, n = 10). Most molybdenite samples have high δ 34S values (≥8.4‰) relative to other sulfide minerals (i.e., galena, sphalerite, pyrite, and chalcopyrite) of Stages II to V ( δ 34S = 2.5–8.3‰, n = 22). Molybdenite also has low 207Pb/204Pb and 208Pb/204Pb ratios relative to other sulfide minerals although there are minor overlaps. In a diagram of 206Pb/204Pb versus 207Pb/204Pb, these Pb isotope data display a positive trend transecting the growth curves of crustal lead, which could be invoked by mixing of crustal and mantle sources with distinct Pb isotopes. In combination with the S isotope data and mineral paragenesis, we suggest that magmas were the main source of molybdenum, whereas other metals (i.e., Pb, Zn, and Cu) were possibly sourced from the country rocks.

38 citations

Journal ArticleDOI
TL;DR: In this article, isotopic and trace element analyses of carbonate and clay minerals from clastic sedimentary rocks of the Gunnedah Basin and the Denison Trough in the Bowen Basin were conducted.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared diagenetic properties of fluvial sandstones with lacustrine sandstones in a Triassic-Jurassic continental rift basin (Hartford Basin, Newark Supergroup).

38 citations

Journal ArticleDOI
TL;DR: In the Bowland Basin, petrographic and chemical characteristics indicate that dolomitizing solutions were predominantly derived from the enclosing mudrocks (Bowland Shales) during intermediate/deep burial as discussed by the authors.
Abstract: Widespread dolomitization and leaching occur in the Asbian to Brigantian (Dinantian) sequence of the Bowland Basin. Within this mudrock-dominated succession, dolomite is developed in calcarenites and limestone breccia/conglomerates deposited in a carbonate slope environment (Pendleside Limestone) and also within graded quartz wackes deposited by density currents in a generally ‘starved’ basin environment (Pendleside Sandstone). The dolomitized intervals range in thickness from less than one metre to several tens of metres and have a stratabound nature. All stages of calcite cement pre-date dolomitization and calcite veins are dolomitized. Dolomite crystals replace neomorphic spar and may also contain insoluble residues that were concentrated along stylolites. Thus dolomitization was a late stage process within the carbonate diagenetic sequence. A late-stage diagenetic origin is also indicated within the sandstones, with dolomite post-dating the development of quartz overgrowths. Six main textural styles of dolomite are observed: (1) scattered; (2) mosaic; (3) subhedral to euhedral rhombic; (4) microcrystalline; (5) single crystal and (6) saddle. The style of dolomite developed is dependent on the host rock mineralogy, on whether it is space-filling or replacive and also on temperature. Chemically the dolomite varies from near stoichiometric compositions to ankeritic varieties containing up to 20 mole % FeCO3. Generally the dolomites have isotopic compositions depleted in δ18O compared to the host limestone, with similar or lighter δ13C values. Initial dolomite was of the scattered type, but with progressive replacement of the host a mosaic dolostone with a sucrosic texture was produced. There was a general increase in the Fe and Mn content and reduction in δ18O ratio of the crystals during dolomitization. Leaching is restricted to partly dolomitized horizons, where calcite, feldspars, micas, clays and, to some extent, dolomite have been leached. This has produced biomouldic and vuggy secondary porosity within the carbonates, whereas in the sandstones honeycombed, corroded and floating grains associated with oversized pores occur. Porosity within both carbonates and sandstones is reduced by ferroan dolomite/ankerite cements. Field, petrographic and chemical characteristics indicate that dolomitizing solutions were predominantly derived from the enclosing mudrocks (Bowland Shales) during intermediate/deep burial. Fluid migration out of the mudrocks would have been sided by dehydration reactions and overpressure, the fluids migrating along the most permeable horizons—the coarse grained carbonates and sandstones that are now dolomitized and contain secondary porosity.

37 citations


Network Information
Related Topics (5)
Zircon
23.7K papers, 786.6K citations
84% related
Sedimentary rock
30.3K papers, 746.5K citations
84% related
Carbonate
34.8K papers, 802.6K citations
80% related
Basalt
18.6K papers, 805.1K citations
79% related
Continental crust
11.1K papers, 677.5K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202270
202140
202027
201946
201842