Topic
Ankyrin
About: Ankyrin is a research topic. Over the lifetime, 1362 publications have been published within this topic receiving 79235 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: Transformation of the cloned wild-type NPR1 gene into npr1 mutants not only restored the responsiveness to SAR induction with respect to PR-gene expression and resistance to infections, but also rendered the transgenic plants more resistant to infection by P. syringae in the absence of SAR induction.
Abstract: The Arabidopsis NPR1 gene controls the onset of systemic acquired resistance (SAR), a plant immunity, to a broad spectrum of pathogens that is normally established after a primary exposure to avirulent pathogens. Mutants with defects in NPR1 fail to respond to various SAR-inducing treatments, displaying little expression of pathogenesis-related (PR) genes and exhibiting increased susceptibility to infections. NPR1 was cloned using a map-based approach and was found to encode a novel protein containing ankyrin repeats. The lesion in one npr1 mutant allele disrupted the ankyrin consensus sequence, suggesting that these repeats are important for NPR1 function. Furthermore, transformation of the cloned wild-type NPR1 gene into npr1 mutants not only complemented the mutations, restoring the responsiveness to SAR induction with respect to PR-gene expression and resistance to infections, but also rendered the transgenic plants more resistant to infection by P. syringae in the absence of SAR induction.
1,345 citations
[...]
TL;DR: Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres.
Abstract: Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro, with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.
1,006 citations
[...]
TL;DR: It is reported that a loss-of-function (E1425G) mutation in ankyrin-B, a member of a family of versatile membrane adapters, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans.
Abstract: Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans. Mice heterozygous for a null mutation in ankyrin-B are haploinsufficient and display arrhythmia similar to humans. Mutation of ankyrin-B results in disruption in the cellular organization of the sodium pump, the sodium/calcium exchanger, and inositol-1,4,5-trisphosphate receptors (all ankyrin-B-binding proteins), which reduces the targeting of these proteins to the transverse tubules as well as reducing overall protein level. Ankyrin-B mutation also leads to altered Ca2+ signalling in adult cardiomyocytes that results in extrasystoles, and provides a rationale for the arrhythmia. Thus, we identify a new mechanism for cardiac arrhythmia due to abnormal coordination of multiple functionally related ion channels and transporters.
924 citations
[...]
TL;DR: This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1.
Abstract: The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
897 citations
[...]
TL;DR: Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two‐state folding transition despite their modular structure.
Abstract: The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein–protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein–protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.
796 citations