scispace - formally typeset
Search or ask a question
Topic

Annealing (metallurgy)

About: Annealing (metallurgy) is a research topic. Over the lifetime, 74877 publications have been published within this topic receiving 1017898 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.
Abstract: In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.

1,861 citations

Journal ArticleDOI
TL;DR: In this article, the crystalline structure and the electrochemical properties of the hydrous ruthenium oxide powder have been studied as a function of the annealing temperature.
Abstract: The hydrous ruthenium oxide has been formed by a sol-gel process. The precursor was obtained by mixing aqueous solutions of RuCl{sub 3}{center_dot}xH{sub 2}O and alkalis. The hydrous ruthenium oxide powder was obtained by annealing the precursor at low temperatures. The crystalline structure and the electrochemical properties of the powder have been studied as a function of the annealing temperature. At lower annealing temperatures the powder is in an amorphous phase with a high specific capacitance. Specific capacitance as high as 720 F/g was measured for the powder formed at 150 C. when the annealing temperature exceeded 175 C, the crystalline phase was formed, and the specific capacitance dropped rapidly. The surface area of the powder and the resistivity of the pellet made from these powders have also been studied. The specific surface area and the resistivity decreased as the annealing temperature increased. A capacitor was made with electrodes comprised of hydrous ruthenium oxide and H{sub 2}SO{sub 4} electrolyte. The energy density of 96 J/g (or 26.7 Wh/kg), based on electrode material only, was measured for the cell using hydrous ruthenium oxide electrodes. It was also found that hydrous ruthenium oxide is stable in H{sub 2}SO{sub 4} electrolyte.

1,535 citations

Journal ArticleDOI
TL;DR: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials.
Abstract: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. The carrier diffusion length of MAPbI3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

1,521 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of thermal annealing on charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied.
Abstract: The effect of controlled thermal annealing on charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10 –8 m 2 V –1 s –1 in as-cast devices to ≈ 3× 10 –7 m 2 V –1 s –1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2× 10 –8 m 2 V –1 s –1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red-shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge-carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non-annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short-circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.

1,228 citations

Journal ArticleDOI
TL;DR: In this paper, high-quality indium-tin-oxide (ITO) thin films were grown by pulsed laser deposition (PLD) on glass substrates without a postdeposition annealing treatment.
Abstract: High-quality indium–tin–oxide (ITO) thin films (200–850 nm) have been grown by pulsed laser deposition (PLD) on glass substrates without a postdeposition annealing treatment. The structural, electrical, and optical properties of these films have been investigated as a function of target composition, substrate deposition temperature, background gas pressure, and film thickness. Films were deposited from various target compositions ranging from 0 to 15 wt % of SnO2 content. The optimum target composition for high conductivity was 5 wt % SnO2+95 wt % In2O3. Films were deposited at substrate temperatures ranging from room temperature to 300 °C in O2 partial pressures ranging from 1 to 100 mTorr. Films were deposited using a KrF excimer laser (248 nm, 30 ns full width at half maximum) at a fluence of 2 J/cm2. For a 150-nm-thick ITO film grown at room temperature in an oxygen pressure of 10 mTorr, the resistivity was 4×10−4 Ω cm and the average transmission in the visible range (400–700 nm) was 85%. For a 170-n...

1,202 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
97% related
Amorphous solid
117K papers, 2.2M citations
97% related
Silicon
196K papers, 3M citations
95% related
Band gap
86.8K papers, 2.2M citations
95% related
Oxide
213.4K papers, 3.6M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202294
20211,879
20202,509
20192,722
20182,719
20172,881