scispace - formally typeset
Search or ask a question
Topic

Annona muricata

About: Annona muricata is a research topic. Over the lifetime, 1243 publications have been published within this topic receiving 13596 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine.
Abstract: Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.

358 citations

Journal ArticleDOI
TL;DR: This review focuses on the phytochemicals contents, bioactivity, biological actions and toxicological aspects of extracts and isolated compounds, as well as medicinal uses of A. muricata, with the objective of stimulating further studies on extracts and fruit pulp used for human consumption.

271 citations

Journal ArticleDOI
TL;DR: In Guadeloupe, epidemiological data have linked atypical parkinsonism with fruit and herbal teas from plants of the Annonaceae family, particularly Annona muricata, and these plants contain a class of powerful, lipophilic complex I inhibitors, the annonaceous acetogenins, which support the hypothesis that some forms of parkinsonist might be induced by environmental toxins.
Abstract: In Guadeloupe, epidemiological data have linked atypical parkinsonism with fruit and herbal teas from plants of the Annonaceae family, particularly Annona muricata. These plants contain a class of powerful, lipophilic complex I inhibitors, the annonaceous acetogenins. To determine the neurotoxic potential of these substances, we administered annonacin, the major acetogenin of A. muricata, to rats intravenously with Azlet osmotic minipumps (3.8 and 7.6 mg per kg per day for 28 days). Annonacin inhibited complex I in brain homogenates in a concentration-dependent manner, and, when administered systemically, entered the brain parenchyma, where it was detected by matrix-associated laser desorption ionization-time of flight mass spectrometry, and decreased brain ATP levels by 44%. In the absence of evident systemic toxicity, we observed neuropathological abnormalities in the basal ganglia and brainstem nuclei. Stereological cell counts showed significant loss of dopaminergic neurones in the substantia nigra (-31.7%), and cholinergic (-37.9%) and dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-immunoreactive GABAergic neurones (-39.3%) in the striatum, accompanied by a significant increase in the number of astrocytes (35.4%) and microglial cells (73.4%). The distribution of the lesions was similar to that in patients with atypical parkinsonism. These data are compatible with the theory that annonaceous acetogenins, such as annonacin, might be implicated in the aetiology of Guadeloupean parkinsonism and support the hypothesis that some forms of parkinsonism might be induced by environmental toxins.

211 citations

Journal ArticleDOI
TL;DR: The findings of this laboratory animal study suggest that A. muricata extract has a protective, beneficial effect on hepatic tissues subjected to STZ-induced oxidative stress, possibly by decreasing lipid peroxidation and indirectly enhancing production of insulin and endogenous antioxidants.
Abstract: Extracts from various morphological parts of Annona muricata Linn. (Annonaceae) are widely used medicinally in many parts of the world for the management, control and/or treatment of a plethora of human ailments, including diabetes mellitus (DM). The present study was undertaken to investigate the possible protective effects of A. muricata leaf aqueous extract (AME) in rat experimental paradigms of DM. The animals used were broadly divided into four (A, B, C and D) experimental groups. Group A rats served as 'control' animals and received distilled water in quantities equivalent to the administered volumes of AME and reference drugs' solutions intraperitoneally. Diabetes mellitus was induced in Groups B and C rats by intraperitoneal injections of streptozotocin (STZ, 70 mg kg(-1)). Group C rats were additionally treated with AME (100 mg kg(-1) day(-1), p.o.) as from day 3 post STZ injection, for four consecutive weeks. Group D rats received AME (100 mg kg(-1) day(-1) p.o.) only for four weeks. Post-euthanization, hepatic tissues were excised and processed biochemically for antioxidant enzymes and lipid profiles, such as catalase (CAT), reactive oxygen species (ROS), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), thiobarbituric acid reactive substances (TBARS), triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL), respectively. Treatment of Groups B and C rats with STZ (70 mg kg(-1) i. p.) resulted in hyperglycaemia, hypoinsulinaemia, and increased TBARS, ROS, TC, TG and LDL levels. STZ treatment also significantly decreased (p<0.05) CAT, GSH, SOD, GSH-Px activities, and HDL levels. AME-treated Groups C and D rats showed significant decrease (p<0.05) in elevated blood glucose, ROS, TBARS, TC, TG and LDL. Furthermore, AME treatment significantly increased (p<0.05) antioxidant enzymes' activities, as well as serum insulin levels. The findings of this laboratory animal study suggest that A. muricata extract has a protective, beneficial effect on hepatic tissues subjected to STZ-induced oxidative stress, possibly by decreasing lipid peroxidation and indirectly enhancing production of insulin and endogenous antioxidants.

170 citations

Journal Article
TL;DR: In this paper, the authors used Chi-square goodness of fit test to assign the relative abundance of different phytochemicals, including secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols.
Abstract: OBJECTIVE To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. METHODS Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. RESULTS Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. CONCLUSIONS The results showed that A. muricata was a promising new antioxidant and anticancer agent.

158 citations


Network Information
Related Topics (5)
DPPH
30.1K papers, 759.9K citations
81% related
Gallic acid
9.6K papers, 287K citations
79% related
Polyphenol
6.4K papers, 263.3K citations
78% related
ABTS
9.1K papers, 282.5K citations
78% related
Essential oil
32.6K papers, 625.2K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202397
2022194
202183
2020142
2019119
2018122