scispace - formally typeset
Search or ask a question
Topic

Annotation

About: Annotation is a research topic. Over the lifetime, 6719 publications have been published within this topic receiving 203463 citations. The topic is also known as: note & markup.


Papers
More filters
Journal ArticleDOI
TL;DR: By augmenting event annotations with meta-knowledge, more sophisticated IE systems can be trained, which allow interpretative information to be specified as part of the search criteria, and can assist in a number of important tasks.
Abstract: Biomedical papers contain rich information about entities, facts and events of biological relevance. To discover these automatically, we use text mining techniques, which rely on annotated corpora for training. In order to extract protein-protein interactions, genotype-phenotype/gene-disease associations, etc., we rely on event corpora that are annotated with classified, structured representations of important facts and findings contained within text. These provide an important resource for the training of domain-specific information extraction (IE) systems, to facilitate semantic-based searching of documents. Correct interpretation of these events is not possible without additional information, e.g., does an event describe a fact, a hypothesis, an experimental result or an analysis of results? How confident is the author about the validity of her analyses? These and other types of information, which we collectively term meta-knowledge, can be derived from the context of the event. We have designed an annotation scheme for meta-knowledge enrichment of biomedical event corpora. The scheme is multi-dimensional, in that each event is annotated for 5 different aspects of meta-knowledge that can be derived from the textual context of the event. Textual clues used to determine the values are also annotated. The scheme is intended to be general enough to allow integration with different types of bio-event annotation, whilst being detailed enough to capture important subtleties in the nature of the meta-knowledge expressed in the text. We report here on both the main features of the annotation scheme, as well as its application to the GENIA event corpus (1000 abstracts with 36,858 events). High levels of inter-annotator agreement have been achieved, falling in the range of 0.84-0.93 Kappa. By augmenting event annotations with meta-knowledge, more sophisticated IE systems can be trained, which allow interpretative information to be specified as part of the search criteria. This can assist in a number of important tasks, e.g., finding new experimental knowledge to facilitate database curation, enabling textual inference to detect entailments and contradictions, etc. To our knowledge, our scheme is unique within the field with regards to the diversity of meta-knowledge aspects annotated for each event.

89 citations

Patent
19 Jan 2010
TL;DR: A fact extraction tool set (FEX) as discussed by the authorsEX is a pattern matching language which is used to find and match patterns of attributes that correspond to targeted pieces of information in the text, and extract that information.
Abstract: A fact extraction tool set (“FEX”) finds and extracts targeted pieces of information from text using linguistic and pattern matching technologies, and in particular, text annotation and fact extraction. Text annotation tools break a text, such as a document, into its base tokens and annotate those tokens or patterns of tokens with orthographic, syntactic, semantic, pragmatic and other attributes. A user-defined “Annotation Configuration” controls which annotation tools are used in a given application. XML is used as the basis for representing the annotated text. A tag uncrossing tool resolves conflicting (crossed) annotation boundaries in an annotated text to produce well-formed XML from the results of the individual annotators. The fact extraction tool is a pattern matching language which is used to write scripts that find and match patterns of attributes that correspond to targeted pieces of information in the text, and extract that information.

88 citations

Journal ArticleDOI
TL;DR: In this article , a human-in-the-loop pipeline for rapid prototyping of new custom segmentation models is proposed. But the pipeline does not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images.
Abstract: Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

88 citations

Proceedings Article
01 May 2006
TL;DR: The SALTO tool was originally developed for the annotation of semantic roles in the frame semantics paradigm, but can be used for graphical annotation of treebanks with general relational information in a simple drag-and-drop fashion.
Abstract: In this paper, we describe the SALTO tool. It was originally developed for the annotation of semantic roles in the frame semantics paradigm, but can be used for graphical annotation of treebanks with general relational information in a simple drag-and-drop fashion. The tool additionally supports corpus management and quality control.

88 citations

Journal ArticleDOI
TL;DR: The evaluation of the prototype system on 17,000 images and 7736 automatically extracted annotation words from crawled Web pages for multi-modal image retrieval has indicated that the proposed semantic model and the developed Bayesian framework are superior to a state-of-the-art peer system in the literature.
Abstract: This paper addresses automatic image annotation problem and its application to multi-modal image retrieval. The contribution of our work is three-fold. (1) We propose a probabilistic semantic model in which the visual features and the textual words are connected via a hidden layer which constitutes the semantic concepts to be discovered to explicitly exploit the synergy among the modalities. (2) The association of visual features and textual words is determined in a Bayesian framework such that the confidence of the association can be provided. (3) Extensive evaluation on a large-scale, visually and semantically diverse image collection crawled from Web is reported to evaluate the prototype system based on the model. In the proposed probabilistic model, a hidden concept layer which connects the visual feature and the word layer is discovered by fitting a generative model to the training image and annotation words through an Expectation-Maximization (EM) based iterative learning procedure. The evaluation of the prototype system on 17,000 images and 7736 automatically extracted annotation words from crawled Web pages for multi-modal image retrieval has indicated that the proposed semantic model and the developed Bayesian framework are superior to a state-of-the-art peer system in the literature.

88 citations


Network Information
Related Topics (5)
Inference
36.8K papers, 1.3M citations
81% related
Deep learning
79.8K papers, 2.1M citations
80% related
Graph (abstract data type)
69.9K papers, 1.2M citations
80% related
Unsupervised learning
22.7K papers, 1M citations
79% related
Cluster analysis
146.5K papers, 2.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,461
20223,073
2021305
2020401
2019383
2018373