scispace - formally typeset
Search or ask a question
Topic

Annulation

About: Annulation is a research topic. Over the lifetime, 10152 publications have been published within this topic receiving 189701 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The attractive feature of this approach is the synthesis of three important bioactive heterocyclic frameworks from the same α-oxoketene-N,S-arylaminoacetal under the similar reaction conditions making this new strategy highly useful in diversity oriented synthesis (DOS).

57 citations

Journal ArticleDOI
TL;DR: The radical C(sp2)-H sulfonylation and C( sp2)-N bond oxygenation enabling the chemo-selective synthesis of 3-sulfonyl chromones using enaminones and sulfonyl hydrazines have been accomplished.

57 citations

Journal ArticleDOI
TL;DR: In this article, a dipeptide phosphine catalyst with an l-d configuration was employed to obtain α-selective [3 + 2] annulation products with good regioselectivities and enantioselectivity.
Abstract: Catalyst-controlled regiodivergent [3 + 2] annulations of aurones and allenoates have been developed. When a dipeptide phosphine catalyst with an l-d- configuration was employed, α-selective [3 + 2] annulation products could be obtained with good regioselectivities and enantioselectivities. With the employment of l-l- dipeptide phosphines, γ-selective annulation products could be selectively obtained with excellent enantioselectivities. By simply tuning the catalyst configurations, a wide range of α-selective or γ-selective spirocyclic benzofuranones with either aryl or alkyl substitutions could be readily prepared. DFT calculations suggest that the conformation of the dipeptide phosphines influences the hydrogen bonding interactions or the distortion energy, resulting in delicate energy differentiation in the transition states, and accounting for the observed regioselectivity.

57 citations

Journal ArticleDOI
TL;DR: A proposed mechanism for the synthesis of 1,3-benzoxazine derivatives involves the formation of the expected 2-amino-3-(1-hydroxyalkyl)naphthalenes, followed by their condensation with an iminium ion species formed from the trialkylamine base used in the reaction.
Abstract: Intramolecular carbopalladation of the cyano group has been employed for the synthesis of 3,4-disubstituted 2-aminonaphthalenes. (2-Iodophenyl)acetonitrile reacts with a variety of internal alkynes to afford 2-aminonaphthalenes in high yields with good regioselectivity. The scope and limitations of this process, which proceeds by the intramolecular addition of a vinylpalladium species to the triple bond of the cyano group, have been studied. The annulation of certain hindered propargylic alcohols affords 1,3-benzoxazine derivatives, rather than the expected 2-aminonaphthalenes. The involvement of trialkylamine bases in the formation of these heterocyclic compounds has been established. A proposed mechanism for the synthesis of 1,3-benzoxazine derivatives involves the formation of the expected 2-amino-3-(1-hydroxyalkyl)naphthalenes, followed by their condensation with an iminium ion species formed from the trialkylamine base used in the reaction.

57 citations

Journal ArticleDOI
TL;DR: A nickel/NHC system for regioselective oxidative annulation by double C-H bond activation and concomitant alkyne insertion is described, which plays a double role as a two-component coupling partner and as a hydrogen acceptor.
Abstract: A nickel/NHC system for regioselective oxidative annulation by double C-H bond activation and concomitant alkyne insertion is described. The catalytic reaction requires a bidentate directing group, such as an 8-aminoquinoline, embedded in the substrate. Various 5,6,7,8-tetrasubstituted-N-(quinolin-8-yl)-1-naphthamides can be prepared as well as phenanthrene and benzo[h]quinoline amide derivatives. Diarylalkynes, dialkylalkynes, and arylalkylalkynes can be used in the system. A Ni(0)/Ni(II) catalytic cycle is proposed as the main catalytic cycle. The alkyne plays a double role as a two-component coupling partner and as a hydrogen acceptor.

57 citations


Network Information
Related Topics (5)
Cycloaddition
39.9K papers, 728.7K citations
97% related
Enantioselective synthesis
58.1K papers, 1.6M citations
97% related
Aryl
95.6K papers, 1.3M citations
96% related
Nucleophile
30.8K papers, 602.8K citations
95% related
Lewis acids and bases
29.5K papers, 631.7K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023468
2022850
2021754
2020618
2019699
2018603