scispace - formally typeset
Search or ask a question
Topic

Anomalous magnetic dipole moment

About: Anomalous magnetic dipole moment is a research topic. Over the lifetime, 3508 publications have been published within this topic receiving 79374 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The complete review as discussed by the authors is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as thePDG Book.
Abstract: The complete Review(both volumes) is published online on the website of the Particle Data Group(http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as thePDG Book. AParticle Physics Bookletwith the Summary Tables and essential tables, figures, and equations from selected review articles is also available.

6,464 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2.54 ppm, which represents a 14-fold improvement compared to previous measurements at CERN.
Abstract: We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positive and negative muons, were used to deduce a(mu)(Expt)=11659208.0(5.4)(3.3)x10(-10), where the statistical and systematic uncertainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold improvement compared to previous measurements at CERN. The standard model value for a(mu) includes contributions from virtual QED, weak, and hadronic processes. While the QED processes account for most of the anomaly, the largest theoretical uncertainty, approximate to 0.55 ppm, is associated with first-order hadronic vacuum polarization. Present standard model evaluations, based on e(+)e(-) hadronic cross sections, lie 2.2-2.7 standard deviations below the experimental result.

2,207 citations

Journal ArticleDOI
08 Jul 2010-Nature
TL;DR: The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent by electron–proton scattering experiments, and the present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants.
Abstract: Considering that the proton is a basic subatomic component of all ordinary matter — as well as being ubiquitous in its solo role as the hydrogen ion H+ — there are some surprising gaps in our knowledge of its structure and behaviour. A collaborative project to determine the root-mean-square charge radius of the proton to better than the 1% accuracy of the current 'best' value suggests that those knowledge gaps may be greater than was thought. The new determination comes from a technically challenging spectroscopic experiment — the measurement of the Lamb shift (the energy difference between a specific pair of energy states) in 'muonic hydrogen', an exotic atom in which the electron is replaced by its heavier twin, the muon. The result is unexpected: a charge radius about 4% smaller than the previous value. The discrepancy remains unexplained. Possible implications are that the value of the most accurately determined fundamental constant, the Rydberg constant, will need to be revised — or that the validity of quantum electrodynamics theory is called into question. Here, a technically challenging spectroscopic experiment is described: the measurement of the muonic Lamb shift. The results lead to a new determination of the charge radius of the proton. The new value is 5.0 standard deviations smaller than the previous world average, a large discrepancy that remains unexplained. Possible implications of the new finding are that the value of the Rydberg constant will need to be revised, or that the validity of quantum electrodynamics theory is called into question. The proton is the primary building block of the visible Universe, but many of its properties—such as its charge radius and its anomalous magnetic moment—are not well understood. The root-mean-square charge radius, rp, has been determined with an accuracy of 2 per cent (at best) by electron–proton scattering experiments1,2. The present most accurate value of rp (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants3. This value is based mainly on precision spectroscopy of atomic hydrogen4,5,6,7 and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of rp as deduced from electron–proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant3). An attractive means to improve the accuracy in the measurement of rp is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift10 (the energy difference between the 2S1/2 and 2P1/2 states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations11,12,13,14,15 of fine and hyperfine splittings and QED terms, we find rp = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value3 of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by −110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.

1,152 citations

Journal ArticleDOI
TL;DR: In this article, the effective Lagrangian was derived to describe the interaction between a charged particle and a magnetic moment in the nonrelativistic limit, and it was shown that neutral particles with a magnetic moments will exhibit the Aharonov-Bohm effect in certain circumstances.
Abstract: We derive the effective Lagrangian which describes the interaction between a charged particle and a magnetic moment in the nonrelativistic limit. It is shown that neutral particles with a magnetic moment will exhibit the Aharonov-Bohm effect in certain circumstances. We suggest several types of experiments.

975 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the status of the theoretical prediction and in particular discuss the role of the hadronic vacuum polarization effects and hadronic light-by-light scattering correction, including a new evaluation of the dominant pion exchange contribution.

945 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
95% related
Quantum chromodynamics
47.1K papers, 1.2M citations
95% related
Supersymmetry
29.7K papers, 1.1M citations
94% related
Higgs boson
33.6K papers, 961.7K citations
94% related
Gauge theory
38.7K papers, 1.2M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202376
2022249
2021199
2020135
2019136
2018123