scispace - formally typeset

Topic

Anomaly detection

About: Anomaly detection is a(n) research topic. Over the lifetime, 24275 publication(s) have been published within this topic receiving 407896 citation(s). The topic is also known as: outlier detection & novelty detection.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

7,894 citations

Journal ArticleDOI
16 May 2000
TL;DR: This paper contends that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier, called the local outlier factor (LOF), and gives a detailed formal analysis showing that LOF enjoys many desirable properties.
Abstract: For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal analysis showing that LOF enjoys many desirable properties. Using real-world datasets, we demonstrate that LOF can be used to find outliers which appear to be meaningful, but can otherwise not be identified with existing approaches. Finally, a careful performance evaluation of our algorithm confirms we show that our approach of finding local outliers can be practical.

4,117 citations

Journal ArticleDOI
TL;DR: A survey of contemporary techniques for outlier detection is introduced and their respective motivations are identified and distinguish their advantages and disadvantages in a comparative review.
Abstract: Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review.

2,897 citations

Journal ArticleDOI
TL;DR: The Support Vector Data Description (SVDD) is presented which obtains a spherically shaped boundary around a dataset and analogous to the Support Vector Classifier it can be made flexible by using other kernel functions.
Abstract: Data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers. We will present the Support Vector Data Description (SVDD) which is inspired by the Support Vector Classifier. It obtains a spherically shaped boundary around a dataset and analogous to the Support Vector Classifier it can be made flexible by using other kernel functions. The method is made robust against outliers in the training set and is capable of tightening the description by using negative examples. We show characteristics of the Support Vector Data Descriptions using artificial and real data.

2,431 citations

Proceedings ArticleDOI
08 Jul 2009
TL;DR: A new data set is proposed, NSL-KDD, which consists of selected records of the complete KDD data set and does not suffer from any of mentioned shortcomings.
Abstract: During the last decade, anomaly detection has attracted the attention of many researchers to overcome the weakness of signature-based IDSs in detecting novel attacks, and KDDCUP'99 is the mostly widely used data set for the evaluation of these systems. Having conducted a statistical analysis on this data set, we found two important issues which highly affects the performance of evaluated systems, and results in a very poor evaluation of anomaly detection approaches. To solve these issues, we have proposed a new data set, NSL-KDD, which consists of selected records of the complete KDD data set and does not suffer from any of mentioned shortcomings.

2,387 citations


Network Information
Related Topics (5)
Cluster analysis

146.5K papers, 2.9M citations

90% related
Feature extraction

111.8K papers, 2.1M citations

90% related
Wireless sensor network

142K papers, 2.4M citations

90% related
Deep learning

79.8K papers, 2.1M citations

89% related
Artificial neural network

207K papers, 4.5M citations

88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202284
20212,986
20203,216
20192,860
20182,159
20171,612