scispace - formally typeset

Topic

Ant colony

About: Ant colony is a(n) research topic. Over the lifetime, 5459 publication(s) have been published within this topic receiving 130695 citation(s). The topic is also known as: ant society.


Papers
More filters
Journal ArticleDOI
01 Feb 1996
TL;DR: It is shown how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling, and the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.
Abstract: An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

10,378 citations

Journal ArticleDOI
TL;DR: The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and it is concluded comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.
Abstract: This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSPs. Ants cooperate using an indirect form of communication mediated by a pheromone they deposit on the edges of the TSP graph while building solutions. We study the ACS by running experiments to understand its operation. The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and we conclude comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.

7,152 citations

Book
01 Jan 2004
Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,855 citations

Proceedings Article
01 Jan 1992
TL;DR: A distributed problem solving environment is introduced and its use to search for a solution to the travelling salesman problem is proposed.
Abstract: Ants colonies exhibit very interesting behaviours: even if a single ant only has simple capabilities, the behaviour of a whole ant colony is highly structured. This is the result of coordinated interactions. But, as communication possibilities among ants are very limited, interactions must be based on very simple flows of information. In this paper we explore the implications that the study of ants behaviour can have on problem solving and optimization. We introduce a distributed problem solving environment and propose its use to search for a solution to the travelling salesman problem.

2,723 citations

Journal ArticleDOI
TL;DR: An overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and the ant colony optimization (ACO) metaheuristic is presented.
Abstract: This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.

2,716 citations


Network Information
Related Topics (5)
Optimization problem

96.4K papers, 2.1M citations

76% related
Node (networking)

158.3K papers, 1.7M citations

76% related
Fuzzy logic

151.2K papers, 2.3M citations

76% related
Support vector machine

73.6K papers, 1.7M citations

76% related
Cluster analysis

146.5K papers, 2.9M citations

75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021173
2020214
2019247
2018235
2017263