Topic
Antenna factor
About: Antenna factor is a research topic. Over the lifetime, 26328 publications have been published within this topic receiving 349043 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the physical limitations of omni-directional antennas are considered and the potentiality of a broad band width of an antenna with the maximum dimension of 2a has been shown.
Abstract: The physical limitations of omni‐directional antennas are considered. With the use of the spherical wave functions to describe the field, the directivity gain G and the Q of an unspecified antenna are calculated under idealized conditions. To obtain the optimum performance, three criteria are used, (1) maximum gain for a given complexity of the antenna structure, (2) minimum Q, (3) maximum ratio of G/Q. It is found that an antenna of which the maximum dimension is 2a has the potentiality of a broad band width provided that the gain is equal to or less than 4a/λ. To obtain a gain higher than this value, the Q of the antenna increases at an astronomical rate. The antenna which has potentially the broadest band width of all omni‐directional antennas is one which has a radiation pattern corresponding to that of an infinitesimally small dipole.
1,954 citations
01 Dec 1947
TL;DR: In this paper, a simple formula for the more fundamental properties of small antennas and their behavior in a simple circuit is given for 1-Mc operation in typical circuits, which indicates a loss of about 35 db for the I.R.E. standard capacitive antenna, 43 db for a large loop occupying a volume of 1 meter square by 0.5 meter axial length, and 64 db for an antenna loop of 1/5 these dimensions.
Abstract: A capacitor or inductor operating as a small antenna is theoretically capable of intercepting a certain amount of power, independent of its size, on the assumption of tuning without circuit loss. The practical efficiency relative to this ideal is limited by the "radiation power factor" of the antenna as compared with the power factor and bandwidth of the antenna tuning. The radiation power factor of either kind of antenna is somewhat greater than (1/6π) (Ab/l2) in which Ab is the cylindrical volume occupied by the antenna, and l is the radianlength (defined as 1/2π wavelength) at the operating frequency. The efficiency is further limited by the closeness of coupling of the antenna with its tuner. Other simple formulas are given for the more fundamental properties of small antennas and their behavior in a simple circuit. Examples for 1-Mc. operation in typical circuits indicate a loss of about 35 db for the I.R.E. standard capacitive antenna, 43 db for a large loop occupying a volume of 1 meter square by 0.5 meter axial length, and 64 db for a loop of 1/5 these dimensions.
1,249 citations
TL;DR: A new technique for feeding printed antennas is described in this paper, where a microstrip antenna on one substrate is coupled to a microstripline feed on another parallel substrate through an aperture in the ground plane which separates the two substrates.
Abstract: A new technique for feeding printed antennas is described A microstrip antenna on one substrate is coupled to a microstripline feed on another parallel substrate through an aperture in the ground plane which separates the two substrates A simple theory explaining the coupling mechanism is presented, as well as measurements of a prototype aperture-fed antenna
860 citations
TL;DR: In this article, the multiband behavior of the fractal Sierpinski (1915) antenna is described and compared to the well-known single-band bow-tie antenna.
Abstract: The multiband behavior of the fractal Sierpinski (1915) antenna is described. Due to its mainly triangular shape, the antenna is compared to the well-known single-band bow-tie antenna. Both experimental and numerical results show that the self-similarity properties of the fractal shape are translated into its electromagnetic behavior. A deeper physical insight on such a behavior is achieved by means of the computed current densities over the antenna surface, which also display some similarity properties through the bands.
754 citations
TL;DR: In this article, a coaxially-fed single-layer single-patch wideband microstrip antenna in the form of a rectangular patch with a U-shaped slot is discussed, achieving 10-40% impedance bandwidth without the need of adding parasitic patches in another layer or in the same layer.
Abstract: A coaxially-fed single-layer single-patch wide-band microstrip antenna in the form of a rectangular patch with a U-shaped slot is discussed. Measurements showed that this antenna can attain 10-40% impedance bandwidth without the need of adding parasitic patches in another layer or in the same layer.<
>
742 citations