scispace - formally typeset
Search or ask a question

Showing papers on "Antenna (radio) published in 2011"


Journal ArticleDOI
Seiji Kawamura1, Hiroo Kunimori2, Mizuhiko Hosokawa2, Ryuichi Fujita3, Keiichi Maeda4, Hisa-aki Shinkai5, Takahiro Tanaka6, Yaka Wakabayashi6, Hideki Ishihara7, Kazutaka Nishiyama8, Ken-ichi Ueda9, Kaiki Taro Inoue10, Kazuhiro Yamamoto8, Kunihito Ioka, Feng-Lei Hong11, Yoshiki Tsunesada12, Kenji Numata13, Masaru Shibata6, Hitoshi Kuninaka8, Kazuhiro Hayama1, Chul-Moon Yoo6, Kazuhiro Agatsuma1, Mitsuru Musha9, Shinji Miyoki14, Yasufumi Kojima15, Yumiko Ejiri16, Takamori Akiteru14, Kentaro Somiya4, Dan Chen14, Tadayuki Takahashi8, Shiho Kobayashi17, Mitsuhiro Fukushima1, Takashi Nakamura6, Naoshi Sugiyama18, Yuta Michimura14, Yoshiyuki Obuchi1, Ayaka Shoda14, Kei Kotake1, Shihori Sakata, Takeshi Chiba19, Yoichi Aso14, Shigeo Nagano2, Tomohiro Harada20, Kiwamu Izumi14, Nobuyuki Kanda7, Isao Kawano8, Nobuki Kawashima10, Yasuo Torii1, Motohiro Enoki21, Yoshiaki Himemoto19, Hirotaka Takahashi22, Yudai Suwa6, Hisashi Hirabayashi, Hiroyuki Ito2, Keitaro Takahashi18, Kiyotomo Ichiki18, Kazuhiro Nakazawa14, Morio Toyoshima2, Takashi Hiramatsu6, Hiroyuki Nakano23, Hiroyuki Koizumi8, Ke-Xun Sun24, Toshikazu Ebisuzaki, Kent Yagi6, Takeshi Ikegami11, Koji Arai25, Kouji Nakamura1, Norio Okada1, Takeshi Takashima8, Takehiko Ishikawa8, K. Okada14, Wataru Kokuyama14, Kakeru Takahashi14, Masa-Katsu Fujimoto1, Ryuichi Takahashi26, Ryo Saito14, K. Tsubono14, Osamu Miyakawa14, Ken-ichi Oohara27, Hideyuki Horisawa28, Hideharu Ishizaki1, Shigenori Moriwaki14, Norichika Sago6, Masashi Ohkawa27, Fuminobu Takahashi14, Tatsuaki Hashimoto8, Takashi Sato27, Sachiko Kuroyanagi14, Umpei Miyamoto20, Kazuaki Kuroda14, Toshifumi Futamase29, Fumiko Kawazoe, Hideyuki Tagoshi30, Yoshinori Nakayama31, Masatake Ohashi14, Yoshiharu Eriguchi14, Toshitaka Yamazaki1, Tadashi Takano19, Hiroshi Yamakawa6, Kenta Kiuchi6, Ken-ichi Nakao7, Taiga Noumi14, Kazunori Kohri, Shinichi Nakasuka14, Wataru Hikida30, Hideo Matsuhara8, Isao Naito27, Tomotada Akutsu1, Shijun Yoshida29, Nobuyuki Matsumoto14, Masa-aki Sakagami6, Naoko Ohishi1, Ikkoh Funaki8, Hajime Sotani32, Taizoh Yoshino16, Atsushi Taruya14, Mutsuko Y. Morimoto8, E. Nishida16, Atsushi J. Nishizawa6, Hideki Asada26, Toshiyuki Morisawa6, Shinji Mukohyama14, Shuichi Sato33, Keisuke Taniguchi14, Yousuke Itoh34, Shinji Tsujikawa35, Rieko Suzuki16, Keiko Kokeyama36, Misao Sasaki6, Naoki Seto6, Koji Ishidoshiro14, Ryutaro Takahashi1, Shin-ichiro Sakai8, Hiroyuki Tashiro6, Motoyuki Saijo20, Naoko Kishimoto6, Masaki Ando6, Akitoshi Ueda1, Koh-suke Aoyanagi4, Yoshihide Kozai, Masayoshi Utashima8, Yoshito Niwa14, Jun'ichi Yokoyama14, Nobuyuki Tanaka1, Akito Araya14 

614 citations


Patent
30 Sep 2011
TL;DR: In this article, a method and apparatus that includes features of a receiving antenna configured to wirelessly receive power transmitted by a transmitting device and arranged to associate or dissociate with the transmitting device is described.
Abstract: In accordance with various aspects of the disclosure, a method and apparatus is disclosed that includes features of a receiving antenna configured to wirelessly receive power transmitted by a transmitting device and arranged to associate or dissociate with the transmitting device.

451 citations


Journal ArticleDOI
TL;DR: In this article, the authors present various realizations of both photoconductive and p-i-n diode-based photomixers to overcome the limitations of operation at high frequencies, namely transit time or lifetime rolloff, antenna (R)-device (C) RC roll-off, current screening and blocking and heat dissipation.
Abstract: This review is focused on the latest developments in continuous-wave (CW) photomixing for Terahertz (THz) generation. The first part of the paper explains the limiting factors for operation at high frequencies ∼ 1 THz, namely transit time or lifetime roll-off, antenna (R)-device (C) RC roll-off, current screening and blocking, and heat dissipation. We will present various realizations of both photoconductive and p-i-n diode–based photomixers to overcome these limitations, including perspectives on novel materials for high-power photomixers operating at telecom wavelengths (1550 nm). In addition to the classical approach of feeding current originating from a small semiconductor photomixer device to an antenna (antenna-based emitter, AE), an antennaless approach in which the active area itself radiates (large area emitter, LAE) is discussed in detail. Although we focus on CW photomixing, we briefly discuss recent results for LAEs under pulsed conditions. Record power levels of 1.5 mW average power and conversion efficiencies as high as 2 × 10−3 have been reached, about 2 orders of magnitude higher than those obtained with CW antenna-based emitters. The second part of the paper is devoted to applications for CW photomixers. We begin with a discussion of the development of novel THz optics. Special attention is paid to experiments exploiting the long coherence length of CW photomixers for coherent emission and detection of THz arrays. The long coherence length comes with an unprecedented narrow linewidth. This is of particular interest for spectroscopic applications, the field in which THz research has perhaps the highest impact. We point out that CW spectroscopy systems may potentially be more compact, cheaper, and more accurate than conventional pulsed systems. These features are attributed to telecom-wavelength compatibility, to excellent frequency resolution, and to their huge spectral density. The paper concludes with prototype experiments of THz wireless LAN applications. For future telecommunication systems, the limited bandwidth of photodiodes is inadequate for further upshifting carrier frequencies. This, however, will soon be required for increased data throughput. The implementation of telecom-wavelength compatible photomixing diodes for down-conversion of an optical carrier signal to a (sub-)THz RF signal will be required.

450 citations


Patent
08 Apr 2011
TL;DR: In this paper, a wireless power charging apparatus includes an antenna including first and second orthogonal magnetic elements for detecting a horizontal component of a magnetic field generated from a second charging base antenna.
Abstract: Exemplary embodiments are directed to wireless charging and wireless power alignment of wireless power antennas associated with a vehicle. A wireless power charging apparatus includes an antenna including first and second orthogonal magnetic elements for detecting a horizontal component of a magnetic field generated from a second charging base antenna. A processor determines a directional vector between the antennas.

422 citations


Patent
14 Feb 2011
TL;DR: In this article, a system and method of receiving a channel state information reference signal (CSI-RS) is presented, where a first CSI-RS transmitted from a base station is received at a first periodicity using a first set of antenna ports.
Abstract: A system and method of receiving a channel state information reference signal (CSI-RS) is presented. At a user equipment, a first CSI-RS transmitted from a base station is received. In some implementations, the first CSI-RS is transmitted at a first periodicity using a first set of antenna ports. At the user equipment, a second CSI-RS transmitted from the base station is received. In some implementations, the second CSI-RS is transmitted at a second periodicity using a second set of antenna ports. At least one of the first CSI-RS and the second CSI-RS is used to perform channel measurement.

374 citations


Patent
29 Mar 2011
TL;DR: In this paper, a wireless power transmitting apparatus is provided with a power transmitting circuit configured to generate high frequency power at a variable frequency, and supply the high-frequency power to the power transmitting antenna.
Abstract: A power transmitting antenna includes a first resonant circuit including a power transmitting coil. A power receiving antenna includes a second resonant circuit including a power receiving coil. When the power transmitting antenna and the power receiving antenna are electromagnetically coupled to each other, the power transmitting antenna and the power receiving antenna have an odd-mode resonance frequency corresponding to an odd-mode resonant condition, and an even-mode resonance frequency corresponding to an even-mode resonant condition, and the even-mode resonance frequency is higher than the odd-mode resonance frequency. A wireless power transmitting apparatus is provided with a power transmitting circuit configured to generate high-frequency power at a variable frequency, and supply the high-frequency power to the power transmitting antenna. A control circuit sets the frequency of the high-frequency power generated by the power transmitting circuit to one of the odd-mode resonance frequency and the even-mode resonance frequency.

346 citations


Journal ArticleDOI
TL;DR: In this paper, a dielectric planar antenna was used to tailor the angular emission of single photons from an oriented molecule, achieving record collection efficiency of 96% and detection rates of 50 MHz.
Abstract: Researchers exploit a dielectric planar antenna to tailor the angular emission of single photons from an oriented molecule. Record collection efficiency of 96% and detection rates of 50 MHz are demonstrated using a microscope objective at room temperature.

326 citations


Patent
17 Aug 2011
TL;DR: In this paper, an encoded information reading (EIR) terminal can comprise a microprocessor electrically coupled to a system/data bus, a memory communicatively coupled to the microprocessor, an EIR device, a multi-band antenna, and a wireless communication interface.
Abstract: An encoded information reading (EIR) terminal can comprise a microprocessor electrically coupled to a system/data bus, a memory communicatively coupled to the microprocessor, an EIR device, a multi-band antenna, and a wireless communication interface. The EIR device can be provided by a bar code reading device, an RFID reading device, or a card reading device. The EIR device can be configured to output raw message data containing an encoded message and/or output decoded message data corresponding to an encoded message. The wireless communication interface can comprise a radio frequency (RF) front end electrically coupled to the multi-band antenna. The RF front end can comprise a micro-electromechanical (MEMS) filter array including one or more band-pass filter. Each band-pass filter of the MEMS filter array can be electrically coupled to a bias voltage source or an oscillating signal source. The RF front end can be electrically coupled to an analog-to-digital (A/D) converter and/or to a digital-to-analog (D/A) converter. The wireless communication interface can be configured to transmit radio signals in two or more frequency regulatory domains and/or receive radio signals in two or more frequency regulatory domains. The multi-band antenna can in one embodiment be provided by a meta-material antenna.

322 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a CRLH leaky-wave antenna for antenna applications, which is realized by etching interdigital slots on the waveguide surface and the ground.
Abstract: Composite right/left-handed (CRLH) substrate integrated waveguide (SIW) and half mode substrate integrated waveguide (HMSIW) leaky-wave structures for antenna applications are proposed and investigated. Their propagation properties and radiation characteristics are studied extensively. Their backfire-to-endfire beam-steering capabilities through frequency scanning are demonstrated and discussed. These metamaterial radiating structures are realized by etching interdigital slots on the waveguide surface and the ground. The slot behaves as a series capacitor as well as a radiator leading to a CRLH leaky-wave application. Four antennas are fabricated, measured, and analyzed, including two balanced CRLH SIW designs characterized by single-side or double-side radiation, and two unbalanced HMSIW designs characterized by different boundary conditions. Antenna parameters such as return loss, radiation patterns, gain, and efficiency are all provided. Measured results are consistent with the simulation. All these proposed antennas possess the advantages of low profile, low cost, and low weight, while they are also showing their own unique features, like high directivity, quasi-omnidirectional radiation, miniaturized size, continuous beam-steering capabilities covering both the backward and forward quadrants, etc., providing much design flexibility for the real applications.

304 citations


Patent
25 Mar 2011
TL;DR: In this paper, an antenna-based proximity sensor is used to detect if an external object is within a given distance of the antenna, such as a user's body, by making antenna impedance measurements, which can be used to reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols or take other actions.
Abstract: An electronic device such as a portable electronic device has wireless communications circuitry. Antennas in the electronic device may be used in transmitting radio-frequency antenna signals. A coupler and antenna signal phase and magnitude measurement circuitry may be used to determine when external objects are in the vicinity of the antenna by making antenna impedance measurements. In-band and out-of-band phase and magnitude signal measurements may be made in determining whether external objects are present. Additional sensors such as motion sensors, light and heat sensors, acoustic and electrical sensors may produce data that can be combined with the proximity data gathered using the antenna-based proximity sensor. In response to detecting that an external object such as a user's body is within a given distance of the antenna, the electronic device may reduce transmit powers, switch antennas, steer a phased antenna array, switch communications protocols, or take other actions.

274 citations


Journal ArticleDOI
Huiling Zhu1
TL;DR: Numerical results show that the average spectrum efficiency per sector and the cell edge spectrum efficiency in the microcellular system are better than those in the DAS without frequency reuse, however, when the frequency reuse is considered in theDAS, the Das outperforms the micro cellular system in both of the average and cell edge Spectrum efficiencies.
Abstract: The microcellular system and distributed antenna system (DAS) are two promising systems for future high data rate wireless communications, since both systems can reduce the radio transmission distance between the transmitter and the receiver. This paper aims to compare the average spectrum efficiency and the cell edge spectrum efficiency between the two cellular systems in the downlink transmission. In order to achieve high spectrum efficiency, frequency reuse and/or spatial diversity are exploited in these two systems. The performances between the two cellular systems are theoretically compared in a network topology with seven macrocells, each of which has seven hexagonal sectors (or microcells). Moreover, the approach of antenna unit selection in the DAS for spatial diversity is presented. Numerical results show that the average spectrum efficiency per sector and the cell edge spectrum efficiency in the microcellular system are better than those in the DAS without frequency reuse. However, when the frequency reuse is considered in the DAS, the DAS outperforms the microcellular system in both of the average and cell edge spectrum efficiencies.

Patent
13 May 2011
TL;DR: In this paper, a transmitter may include a transmit antenna configured to generate a field, and at least one parasitic antenna proximate the transmit antenna and configured to modify a distribution of the generated field.
Abstract: Exemplary embodiments are directed to control of field distribution of a wireless power transmitter. A transmitter may include a transmit antenna configured to generate a field. The transmitter may further include least one parasitic antenna proximate the transmit antenna and configured to modify a distribution of the generated field.

Journal ArticleDOI
TL;DR: In this article, a miniaturized multifrequency antenna is proposed, which consists of a circular ring, a Y-shape-like strip, and a defected ground plane.
Abstract: A miniaturized multifrequency antenna is proposed. The proposed antenna can generate three separate impedance bandwidths to cover all the 2.4/5.2/5.8-GHz WLAN operating bands and the 2.5/3.5/5.5-GHz WiMAX bands. The proposed microstrip-fed antenna mainly consists of a circular ring, a Y-shape-like strip, and a defected ground plane. By adding a Y-shape-like strip in the circular ring, the antenna excites two resonant modes and is with miniaturization structure. Because of the introduction of the cambered ground plane with an isosceles triangle-defect, the third wide band with better impedance matching is obtained. A prototype is experimentally tested, and the measured results show good radiation patterns and enough gains across the operation bands.

Journal ArticleDOI
TL;DR: Several downlink multiuser multiple input multiple output (MIMO) DAS strategies are proposed and compared in terms of per-user throughput and area spectral efficiency and approximations of the ergodic rate are proposed to facilitate rapid simulation and design space exploration.
Abstract: Distributed antenna systems (DAS) augment the base station's transmit capability by adding multiple remote radio units, connected to the base station via a high bandwidth and low latency link. With DAS, the base station operates as if it had multiple antennas, but the antennas happen to be in different geographic locations. DAS have been shown to enhance coverage and capacity in cellular systems, in a variety of different configurations. This paper proposes, analyzes, and compares several downlink multiuser multiple input multiple output (MIMO) DAS strategies in terms of per-user throughput and area spectral efficiency. Zero-forcing transmit beamforming is used for transmission, the remote radio units may have one or more antennas, and the subscriber has a single receive antenna. Techniques considered include beamforming across all remote radio units (full transmission), using the same beamforming vector for each remote radio unit (simplified transmission), and selecting a subset of remote radio units. To facilitate rapid simulation and design space exploration, approximations of the ergodic rate are proposed for each technique assuming path-loss, small-scale Rayleigh fading, and out-of-cell interference. Simulations accounting for multiple interfering cells are used to compare the different transmission techniques. Full transmission is found to have the best performance even accounting for out-of-cell interference, though gains diminish for higher numbers of active users. Simplified transmission improves over no DAS but performance degrades with more active remote radio units.

Journal ArticleDOI
H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, Osamu Hashimoto1 
TL;DR: In this paper, a large electronically reconfigurable reflectarray antenna that has 160 × 160 reflecting elements was designed, fabricated, and evaluated so that it could be applied to a millimeter-wave imaging system operating in the 60 GHz band.
Abstract: A large electronically reconfigurable reflectarray antenna that has 160 × 160 reflecting elements was designed, fabricated, and evaluated so that it could be applied to a millimeter-wave imaging system operating in the 60-GHz band. To make it feasible to construct such a large reflectarray, the reflecting element structure had to be simple and easily controlled; therefore, a reflecting element consisting of a microstrip patch and a single-bit digital phase shifter using a p-i-n diode was employed. A large reflectarray antenna was fabricated using the reflecting elements. The measured radiation patterns and antenna gain were in good agreement with those that were calculated. Furthermore, the near-field beam focusing capabilities, which was required to image near-field objects, were also verified through an experiment. Finally, the response time for beamforming was measured, which was far less than the system requirements.

Journal ArticleDOI
TL;DR: A new compact planar ultrawideband (UWB) antenna designed for on-body communications is presented and shows very good performance within the 3-11.2 GHz range, and therefore it might be used successfully for the 3.1-10.6 GHz IR-UWB systems.
Abstract: A new compact planar ultrawideband (UWB) antenna designed for on-body communications is presented. The antenna is characterized in free space, on a homogeneous phantom modeling a human arm, and on a realistic high-resolution whole-body voxel model. In all configurations it demonstrates very satisfactory features for on-body propagation. The results are presented in terms of return loss, radiation pattern, efficiency, and E-field distribution. The antenna shows very good performance within the 3-11.2 GHz range, and therefore it might be used successfully for the 3.1-10.6 GHz IR-UWB systems. The simulation results for the return loss and radiation patterns are in good agreement with measurements. Finally, a time-domain analysis over the whole-body voxel model is performed for impulse radio applications, and transmission scenarios with several antennas placed on the body are analyzed and compared.

Journal ArticleDOI
TL;DR: A graphene sheet using inkjet printing and a wideband dipole antenna application are provided to minimize the loss of raw material and time.
Abstract: PURPOSE: A graphene sheet using inkjet printing and a wideband dipole antenna application are provided to minimize the loss of raw material and time. CONSTITUTION: Waterborne graphene oxide nano particle solution is manufactured and is used for conductive ink of inkjet printing. The chemical characteristic of the waterborne graphene oxide nano particle solution is changed in order to form a detailed pattern on a supporting material. The waterborne graphene oxide nano particle solution is injected to a printer head, and an oxide graphene thin film is formed. The supporting material including the oxide graphene thin film is located in a vapor deposition reactor, and an oxidation-reduction reaction is executed. A graphene sheet based broadband dipole antenna electrode is connected to an antenna analysis device, and the performance of the antenna is measured.

Journal ArticleDOI
TL;DR: In this article, a novel antenna design that effectively covers three bands (the medical implant communications service (MICS) band at 402 MHz, and the industrial, scientific, and medical (ISM) bands at 433 MHz and 2.45 GHz) using a π-shaped radiator with a stacked and spiral structure is described.
Abstract: A novel antenna design that effectively covers three bands (the medical implant communications service (MICS) band at 402 MHz, and the industrial, scientific, and medical (ISM) band at 433 MHz and 2.45 GHz) using a π-shaped radiator with a stacked and spiral structure is described. The antenna has compact size of 254 mm 3 (10 mm by 10 mm by 2.54 mm). The proposed design is effective for triple-band biotelemetry with data telemetry (402 MHz), wireless powering transmission (433 MHz), and wake-up controller (2.45 GHz). An experimental prototype of the compact stacked rectenna was fabricated on a Roger 3210 substrate. This antenna was used in a rectenna (rectifying antenna) for 433 MHz wireless powering transmission, and provided a conversion efficiency of 86% when 11 dBm microwave power was received at 433 MHz with a 5 kΩ load. The optimal antenna was fabricated and tested in a minced front leg of pork. The simulated and measured bandwidths were 86 MHz and 113 MHz in the MICS band, and 60 MHz and 70 MHz in the ISM band, respectively.

Patent
21 Feb 2011
TL;DR: In this paper, a dielectric resonator antenna consisting of a ground plane, operatively coupled with the ground plane and a substrate, having a feeding network consisting of four microstrip lines is presented.
Abstract: The present invention provides a dielectric resonator antenna comprising: a dielectric resonator; a ground plane, operatively coupled with the dielectric resonator, the ground plane having four slots; and a substrate, operatively coupled to the ground plane, having a feeding network consisting of four microstrip lines; wherein the four slots are constructed and geometrically arranged to ensure proper circular polarization and coupling to the dielectric resonator; and wherein the antenna feeding network combines the four microstrip lines with a 90 degree phase difference to generate circular polarization over a wide frequency band.

Proceedings ArticleDOI
01 Dec 2011
TL;DR: A channel sounder that operates at 38 and 60 GHz with a passband bandwidth of 1.9 GHz is presented and provides sub-ns RMS delay spread measurement resolution and angle-of-arrival (AOA) capabilities.
Abstract: Millimeter wave (mm-wave) channel models for outdoor wireless systems with adaptive antennas are needed to exploit the massive bandwidths available at frequencies above 30 GHz. In this paper, we describe 60 GHz wideband propagation measurements in cellular peer-to-peer outdoor environments and in-vehicle scenarios. We present a channel sounder that operates at 38 and 60 GHz with a passband bandwidth of 1.9 GHz. The channel sounder provides sub-ns RMS delay spread measurement resolution and angle-of-arrival (AOA) capabilities. AOA multipath measurements for cellular peer-to-peer communications in an outdoor campus setting show that in all measured locations, some non-Line of Sight (NLOS) antenna orientations can exploit beamforming to create links using scattering in the channel. Measurements using rotating directional antennas in NLOS antenna pointing scenarios found links with up to 36.6 ns RMS delay spread and an average propagation path loss exponent of 4.19, whereas LOS channels provided sub-nanosecond RMS delay spreads and an average path loss exponent of 2.23 (close to free space). Measurements into a vehicle showed similarities to outdoor peer-to-peer environments for LOS channels, but in NLOS situations there was significantly greater path attenuation due to the vehicle interior, vehicle body, windows, and passengers in the vehicle.

Journal ArticleDOI
TL;DR: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna.
Abstract: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna. This is in contrast to a large body of prior work in single-user, multiuser, and ad hoc wireless networks that have shown linear scaling is achievable when multiple receive and transmit antennas (i.e., MIMO transmission) are employed, but that throughput increases logarithmically or sublinearly with N_r when only a single transmit antenna (i.e., SIMO transmission) is used. The linear gain is achieved by using the receive degrees of freedom to simultaneously suppress interference and increase the power of the desired signal, and exploiting the subsequent performance benefit to increase the density of simultaneous transmissions instead of the transmission rate. This result is proven in the transmission capacity framework, which presumes single-hop transmissions in the presence of randomly located interferers, but it is also illustrated that the result holds under several relaxations of the model, including imperfect channel knowledge, multihop transmission, and regular networks (i.e., interferers are deterministically located on a grid).

Patent
09 Jun 2011
TL;DR: A communication apparatus which communicates data with plural other communication apparatuses by performing wireless communication includes: plural antennas; a communication level obtainment unit which obtains communication levels for the antennas obtained when the communication apparatus performed the wireless communication with the other communication apparatus.
Abstract: A communication apparatus which communicates data with plural other communication apparatuses by performing wireless communication includes: plural antennas; a communication level obtainment unit which obtains communication levels for the antennas obtained when the communication apparatus performed the wireless communication with the other communication apparatuses; a count unit which counts, for each of the antennas, the number of established communications that is the number of one or more of the other communication apparatuses which successfully established communication through the antenna; an antenna selection unit which selects, when the total number of antennas whose numbers of established communications are greatest is more than one, one of the antennas corresponding to a communication level that is highest among communication levels of plural antennas of the other communication apparatus corresponding to the lowest communication level; and a transmission unit which broadcasts predetermined data to the other communication apparatuses through the selected antenna

Patent
19 Jan 2011
TL;DR: In this paper, an antenna device is a multilayer structure in which its base body is a laminate of the magnetic layer and non-magnetic layer and the predetermined patterns are disposed inside and outside the laminate.
Abstract: An antenna device includes an antenna coil including a first conductive pattern disposed on a first major surface of a magnetic sheet, a second conductive pattern disposed on a first major surface of a non-magnetic sheet, and an interlayer conductor connecting the first conductive pattern and second conductive pattern. The antenna coil including the first conductive pattern and second conductive pattern defines a spiral or substantially spiral pattern. The antenna device is a resin multilayer structure in which its base body is a laminate of the magnetic layer and non-magnetic layer and the predetermined patterns are disposed inside and outside the laminate.

Journal ArticleDOI
TL;DR: The design procedure, realization and measurements of an implantable radiator for telemetry applications, inserted in a body phantom, is presented and a good correspondence with theoretical predictions is registered.
Abstract: The design procedure, realization and measurements of an implantable radiator for telemetry applications are presented. First, free space analysis allows the choice of the antenna typology with reduced computation time. Subsequently the antenna, inserted in a body phantom, is designed to take into account all the necessary electronic components, power supply and bio-compatible insulation so as to realize a complete implantable device. The conformal design has suitable dimensions for subcutaneous implantation (10 × 32.1 mm). The effect of different body phantoms is discussed. The radiator works in both the Medical Device Radiocommunication Service (MedRadio, 401-406 MHz) and the Industrial, Scientific and Medical (ISM, 2.4-2.5 GHz) bands. Simulated maximum gains attain -28.8 and - 18.5 dBi in the two desired frequency ranges, respectively, when the radiator is implanted subcutaneously in a homogenous cylindrical body phantom (80 × 110 mm) with muscle equivalent dielectric properties. Three antennas are realized and characterized in order to improve simulation calibration, electromagnetic performance, and to validate the repeatability of the manufacturing process. Measurements are also presented and a good correspondence with theoretical predictions is registered.

Journal ArticleDOI
TL;DR: This communication presents a new antenna system designed for cognitive radio applications that has been simulated with the driving motor being taken into consideration and a good agreement is found between the simulated and the measured antenna radiation properties.
Abstract: This communication presents a new antenna system designed for cognitive radio applications. The antenna structure consists of a UWB antenna and a frequency reconfigurable antenna system. The UWB antenna scans the channel to discover “white space” frequency bands while tuning the reconfigurable section to communicate within these bands. The frequency agility is achieved via a rotational motion of the antenna patch. The rotation is controlled by a stepper motor mounted on the back of the antenna structure. The motor's rotational motion is controlled by LABVIEW on a computer connected to the motor through its parallel port. The computer's parallel port is connected to a NPN Darlington array that is used to drive the stepper motor. The antenna has been simulated with the driving motor being taken into consideration. A good agreement is found between the simulated and the measured antenna radiation properties.

Journal ArticleDOI
TL;DR: The main purpose of the System Fidelity Factor (SFF) is to incorporate frequency and time domain characteristics of an antenna system into a comparison method for ultrawideband (UWB) antennas.
Abstract: The main purpose of the System Fidelity Factor (SFF) is to incorporate frequency and time domain characteristics of an antenna system into a comparison method for ultrawideband (UWB) antennas. The SFF is an interesting tool because both simulations and measurements can be done in a simple and straight-forward manner. Simulations of a single antenna are combined into a two-antennas system analysis by means of a simple post-processing, where the transfer function of the transmitting and receiving antennas are calculated. Measurements of the SFF are done using a two port Vector Network Analyzer (VNA). The polar representation of the SFF allows an equitable comparison between antennas. The procedure to derive the SFF is described in detail in the paper. Two examples are given where the UWB performance of three antenna systems are compared. In the first example antenna systems of two identical monopoles are studied. In the second example the transmitting antenna is a Vivaldi and the receiving antenna a monopole.

Patent
08 Mar 2011
TL;DR: In this paper, a method for controlling uplink power in a distributed multi-node system, comprising the following steps: receiving reference signals from a plurality of antenna nodes containing at least one antenna.
Abstract: The present description relates to a method for controlling uplink power in a distributed multi-node system, comprising the following steps: receiving reference signals from a plurality of antenna nodes containing at least one antenna; estimating average propagation loss on the basis of the receiving power of the reference signals received from the plurality of antenna nodes; receiving, via a downlink control channel, noise and interference (NI) information from a base station which contains the plurality of antenna nodes; and determining uplink transmission power using the estimated average propagation loss and the received noise and interference information.

Journal ArticleDOI
TL;DR: In this article, the authors present ultra broadband channel measurements at 300 GHz for two distinct indoor scenarios, a point-to-point link of devices on a desktop and the connection of a laptop to an access point in the middle of an office room.
Abstract: Ultrabroadband Terahertz communication systems are expected to help satisfy the ever-growing need for unoccupied bandwidth. Here, we present ultra broadband channel measurements at 300 GHz for two distinct indoor scenarios, a point-to-point link of devices on a desktop and the connection of a laptop to an access point in the middle of an office room. In the first setup, measurements are taken with regard to distance, different antenna types and device displacements. Additionally, an interference constellation according to the two-ray model is examined. In the second setup, the focus is on the detection and characterization of the LOS- and the NLOS-paths in an indoor environment, including a maximum of two reflections. Temporal channel characteristics are examined with regard to maximum achievable symbol rates. Furthermore, ray obstruction due to objects in the transmission path is investigated.

Journal ArticleDOI
TL;DR: In this paper, a modified antipodal Vivaldi antenna is presented and a novel tapered slot edge (TSE) structure is employed in this design, which has the capacity to extend the low-end bandwidth limitation and improve the radiation characteristics in the lower frequencies.
Abstract: In this letter, a modified antipodal Vivaldi antenna is presented. A novel tapered slot edge (TSE) structure is employed in this design. The proposed TSE has the capacity to extend the low-end bandwidth limitation and improve the radiation characteristics in the lower frequencies. A prototype of the modified antenna is fabricated and experimentally studied as well. The measured results show reasonable agreement with the simulated ones that validate the design procedure and confirm the benefits of the modification.

Journal ArticleDOI
TL;DR: The co-design approach for the integration of filter and antenna is introduced and the proposed structure provides good design accuracy and filter skirt selectivity as compared to the filter simple cascade with antenna and a bandpass filter of the same order.
Abstract: Synthesis and design of a new printed filtering antenna is presented in this communication. For the requirements of efficient integration and simple fabrication, the co-design approach for the integration of filter and antenna is introduced. The printed inverted-L antenna and the parallel coupled microstrip line sections are used for example to illustrate the synthesis of a bandpass filtering antenna. The equivalent circuit model for the inverted-L antenna, which is mainly a series RLC circuit, is first established. The values of the corresponding circuit components are then extracted by comparing with the full-wave simulation results. The inverted-L antenna here performs not only a radiator but also the last resonator of the bandpass filter. A design procedure is given, which clearly indicates the steps from the filter specifications to the implementation. As an example, a 2.45 GHz third-order Chebyshev bandpass filter with 0.1 dB equal-ripple response is tackled. Without suffering more circuit area, the proposed structure provides good design accuracy and filter skirt selectivity as compared to the filter simple cascade with antenna and a bandpass filter of the same order. The measured results, including the return loss, total radiated power, and radiation gain versus frequency, agree well with the designed ones.