scispace - formally typeset
Search or ask a question
Topic

Anthrax vaccines

About: Anthrax vaccines is a research topic. Over the lifetime, 685 publications have been published within this topic receiving 21495 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The various in vitro and in vivo model systems used to study the etiological agents of anthrax and tuberculosis, discussing their contributions and recent themes are discussed.
Abstract: Robert Koch utilized animal model systems to put forward his postulates while discovering the etiological agents of anthrax and tuberculosis, Bacillus anthracis and Mycobacterium tuberculosis, respectively. After more than 130 years, we have achieved limited success towards understanding these two pestilences, which have propagated as scourge against humans. B. anthracis and M. tuberculosis are diverse organisms, which share a common evolutionary path in tropics. They adapt unique strategies to overcome unfavorable conditions and surpass the host defense mechanisms. B. anthracis is an endospore forming bacteria that primarily acts by releasing toxins in the host cells.. M. tuberculosis is an intracellular bacteria that resides within the host macrophages by blocking phagosome-lysosome fusion events and ensuring its own survival. The bacterium can remain dormant for long periods, and when activated, it spreads in lungs and other extrapulmonary sites leading to formation of necrotic granulomas. The two diseases are immunologically distinct examples of inducing primarily either humoral or cell mediated immunity. Natural immune response to the two diseases probably explains early success achieved with the anthrax vaccine, while the hunt for successful tuberculosis prevention is still on. For comprehensive understanding of these diseases, model systems are of utmost importance that can alleviate detailed assessment of disease etiology and introductory treatment regimes. In this review, we discuss the various in vitro and in vivo model systems used to study these two diseases, discussing their contributions and recent themes.

26 citations

Journal ArticleDOI
TL;DR: Differences in the magnitudes of the Fc receptor-mediated neutralization associated with the J774A.1 cell- and RAW 264.7 cell-based assays may account for some of the species dependence of the assays.
Abstract: Different types of anthrax toxin neutralization assays have been utilized to measure the antibody levels elicited by anthrax vaccines in both nonclinical and clinical studies. In the present study, we sought to determine whether three commonly used toxin neutralization assays—J774A.1 cell-, RAW 264.7 cell-, and CHO cell-based assays—yield comparable estimates of neutralization activities for sera obtained after vaccination with anthrax vaccines composed of recombinant protective antigen (rPA). In order to compare the assays, sera were assayed alongside a common reference serum sample and the neutralization titers were expressed relative to the titer for the reference sample in each assay. Analysis of sera from rabbits immunized with multiple doses of the rPA vaccine showed that for later bleeds, the quantitative agreement between the assays was good; however, for early bleeds, some heterogeneity in relative neutralization estimates was observed. Analysis of serum samples from rabbits, nonhuman primates, and humans immunized with the rPA vaccine showed that the relative neutralization estimates obtained in the different assays agreed to various extents, depending on the species of origin of the sera examined. We identified differences in the magnitudes of the Fc receptor-mediated neutralization associated with the J774A.1 cell- and RAW 264.7 cell-based assays, which may account for some of the species dependence of the assays. The differences in the relative neutralization estimates among the assays were relatively small and were always less than 2.5-fold. However, because toxin neutralization assays will likely be used to establish the efficacies of new anthrax vaccines, our findings should be considered when assay outputs are interpreted.

26 citations

Journal ArticleDOI
TL;DR: Sera obtained from vaccinated military personnel had high antibody levels and neutralizing activity, and one individual who had not been boosted for 5 years had low immunoglobulin G antibody levels but a detectable neutralization activity, suggesting that this individual produced low levels of very active antibodies.
Abstract: Anthrax toxin consists of protective antigen (PA) and two toxic components, lethal factor (LF) and edema factor (EF). PA binds to mammalian cellular receptors and delivers the toxic components to the cytoplasm. PA is the primary antigenic component of the current anthrax vaccine. Immunity is due to the generation of antibodies that prevent the PA-mediated internalization of LF and EF. In this study, we characterized sera obtained from vaccinated military personnel. Anthrax vaccine is administered in a series of six injections at 0, 2, and 4 weeks and 6, 12, and 18 months, followed by annual boosters. The vaccination histories of the subjects were highly varied; many subjects had not completed the entire series, and several had not received annual boosters. We developed a simple colorimetric assay using alamarBlue dye to assess the antibody-mediated neutralization of LF-mediated toxicity to the J774A.1 murine macrophage cell line. Recently vaccinated individuals had high antibody levels and neutralizing activity. One individual who had not been boosted for 5 years had low immunoglobulin G antibody levels but a detectable neutralization activity, suggesting that this individual produced low levels of very active antibodies.

26 citations

Journal ArticleDOI
TL;DR: The Anthrax Vaccine and Antibiotic Availability Program provided options for additional preventive treatment for persons at risk for inhalation anthrax as a result of recent bioterrorism attacks who had concluded or were concluding a 60-day course of antimicrobial prophylaxis.
Abstract: On 20 December 2001, the Centers for Disease Control and Prevention (CDC) initiated the Anthrax Vaccine and Antibiotic Availability Program (hereafter, the "Program") under an investigational new drug application with the US Food and Drug Administration. This Program provided options for additional preventive treatment for persons at risk for inhalation anthrax as a result of recent bioterrorism attacks who had concluded or were concluding a 60-day course of antimicrobial prophylaxis. Participants were offered an additional 40 days of antibiotic therapy (with ciprofloxacin, doxycycline, or amoxicillin) or antibiotic therapy plus 3 doses of anthrax vaccine. By 11 February 2002, a total of 5420 persons had received standardized education about the Program and 1727 persons (32%) had enrolled. Twelve participants have been identified as having serious adverse events (SAEs). One SAE, which occurred in a participant with ciprofloxacin-induced allergic interstitial nephritis, was considered to be probably associated with treatment received in the Program. No SAEs were associated with anthrax vaccine. CDC will continue to monitor Program participants during the next 2 years.

26 citations

Journal ArticleDOI
TL;DR: It is reported here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenvirus immunity.
Abstract: Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.

26 citations


Network Information
Related Topics (5)
Vaccination
65.1K papers, 1.7M citations
75% related
Influenza A virus
20K papers, 955K citations
70% related
Immunoglobulin G
16.7K papers, 721.1K citations
67% related
Antibody
113.9K papers, 4.1M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202312
202236
202112
202026
201915