scispace - formally typeset
Search or ask a question
Topic

Anthrax vaccines

About: Anthrax vaccines is a research topic. Over the lifetime, 685 publications have been published within this topic receiving 21495 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 1984-Vaccine
TL;DR: The authors relate the early work performed by Pasteur, the development of existing vaccines and the efficacy of these vaccines, and predict the type of non-living vaccines which may be used to combat anthrax in the future.

143 citations

ReportDOI
01 Jan 2002
TL;DR: The Anthrax Vaccine: Is It Safe?
Abstract: The vaccine used to protect humans against the anthrax disease, called Anthrax Vaccine Adsorbed (AVA), was licensed in 1970. It was initially used to protect people who might be exposed to anthrax where they worked, such as veterinarians and textile plant workers who process animal hair. When the U. S. military began to administer the vaccine, then extended a plan for the mandatory vaccination of all U. S. service members, some raised concerns about the safety and efficacy of AVA and the manufacture of the vaccine. In response to these and other concerns, Congress directed the Department of Defense to support an independent examination of AVA. The Anthrax Vaccine: Is It Safe? Does It Work? reports the studya (TM)s conclusion that the vaccine is acceptably safe and effective in protecting humans against anthrax. The book also includes a description of advances needed in main areas: improving the way the vaccine is now used, expanding surveillance efforts to detect side effects from its use, and developing a better vaccine.

143 citations

Journal ArticleDOI
TL;DR: AVA has limitations that justify the widespread interest in developing improved vaccines consisting solely of well-characterized components, and there is no experimental support for including the injections given at 6, 12, and 18 months.
Abstract: Bacillus anthracis are aerobic or facultatively anaerobic Gram-positive, nonmotile rods measuring 1.0 μm wide by 3.0–5.0 μm long. Under adverse conditions, B. anthracis form highly resistant endospores (Figure ​(Figure1).1). These are found in soil at sites where infected animals previously died. Interest in the pathogenesis, immunity, and vaccine development for anthrax was heightened by the deliberate contamination of mail with B. anthracis spores soon after the September 11 attacks. At that time, the only US-licensed human vaccine (anthrax vaccine adsorbed, or AVA) was not available because the manufacturer, BioPort Corp., had not received FDA certification of its new manufacturing process. Figure 1 A spore (left) and vegetative cells and a chain of vegetative rod cells of B. anthracis. Electron micrograph courtesy of the Centers for Disease Control and Prevention. Although Pasteur had already demonstrated protection of sheep by injection of heat-attenuated B. anthracis cultures in 1881, our current knowledge of immunity to anthrax in humans remains limited. Widespread vaccination of domesticated animals with attenuated strains such as the Sterne strain began in the 1930s and has virtually abolished anthrax in industrialized countries. In the US, the licensed human vaccine (AVA, newly renamed BioThrax) is an aluminum hydroxide–adsorbed, formalin-treated culture supernatant of a toxigenic, noncapsulated, nonproteolytic B. anthracis strain, V770-NP1-R, derived from the Sterne strain (1). AVA was developed in the early 1950s, when purified components of B. anthracis were not available. Its only demonstrable protective component is the protective antigen (PA) protein (2). A similar culture supernatant–derived human vaccine is produced in the United Kingdom. Data from a 1950s trial of wool-sorters immunized with a vaccine similar to AVA, coupled with long experience with AVA and the United Kingdom vaccine, have shown that a critical level of serum antibodies to the B. anthracis PA confers immunity to anthrax (3, 4). As early as 1959, a British Ministry of Labour report noted that, following the introduction of regular immunization the previous year, the staff of the Government Wool Disinfection Station in Liverpool were free of the disease “despite the high risk to which they are exposed” (5). AVA also protects laboratory animals and cattle from both cutaneous and inhalational challenge with B. anthracis (1, 6, 7). Although safe and efficacious (8), AVA has limitations that justify the widespread interest in developing improved vaccines consisting solely of well-characterized components. First, standardization of AVA is based on the manufacturing process and a potency assay involving protection of guinea pigs challenged intracutaneously with B. anthracis spores (7, 9). PA is not measured in the vaccine, and there is no standardized assay of PA antibodies in animals or humans vaccinated with AVA. These factors probably explain why it has been difficult to maintain consistency of AVA. Second, this vaccine contains other cellular elements that probably contribute to the relatively high rate of local and systemic reactions (8). Finally, the schedule of AVA administration (subcutaneous injections at 0, 2, and 4 weeks and 6, 12, and 18 months with subsequent yearly boosters) is probably not optimal. This schedule, introduced in the 1950s, was designed for rapid induction of immunity (10), but it was recently shown that increasing the interval between the first two injections enhances the level of AVA-induced antibodies to PA (11). Moreover, there is no experimental support for including the injections given at 6, 12, and 18 months.

142 citations


Network Information
Related Topics (5)
Vaccination
65.1K papers, 1.7M citations
75% related
Influenza A virus
20K papers, 955K citations
70% related
Immunoglobulin G
16.7K papers, 721.1K citations
67% related
Antibody
113.9K papers, 4.1M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202312
202236
202112
202026
201915