scispace - formally typeset
Search or ask a question
Topic

Antibacterial activity

About: Antibacterial activity is a research topic. Over the lifetime, 18491 publications have been published within this topic receiving 322490 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: In this paper, preliminary growth analysis data suggest that nanoparticles of ZnO have significantly higher antibacterial effects on Staphylococcus aureus than do five other metal oxide nanoparticles.
Abstract: Nanoparticle metal oxides represent a new class of important materials that are increasingly being developed for use in research and health-related applications. Highly ionic metal oxides are interesting not only for their wide variety of physical and chemical properties but also for their antibacterial activity. Although the in vitro antibacterial activity and efficacy of regular zinc oxides have been investigated, little is known about the antibacterial activity of nanoparticles of ZnO. Preliminary growth analysis data suggest that nanoparticles of ZnO have significantly higher antibacterial effects on Staphylococcus aureus than do five other metal oxide nanoparticles. In addition, studies have clearly demonstrated that ZnO nanoparticles have a wide range of antibacterial effects on a number of other microorganisms. The antibacterial activity of ZnO may be dependent on the size and the presence of normal visible light. The data suggest that ZnO nanoparticles have a potential application as a bacteriostatic agent in visible light and may have future applications in the development of derivative agents to control the spread and infection of a variety of bacterial strains.

1,445 citations

Journal ArticleDOI
14 Mar 2011-Langmuir
TL;DR: The experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.
Abstract: The antibacterial properties of zinc oxide nanoparticles were investigated using both Gram-positive and Gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents agai...

1,425 citations

Journal ArticleDOI
TL;DR: Antibacterial activities of chitosan was inversely affected by pH (pH 4.5-5.9 range tested), with higher activity at lower pH value, and bactericidal effects with gram-positive bacteria than gram-negative bacteria in the presence of 0.1% chitOSan.

1,382 citations

Journal ArticleDOI
TL;DR: The synthesis of metallic nanoparticles of silver using a reduction of aqueous Ag(+) ion with the culture supernatants of Klebsiella pneumoniae is reported on and their part in increasing the antimicrobial activities of various antibiotics against Staphylococcus aureus and Escherichia coli is evaluated.

1,192 citations


Network Information
Related Topics (5)
Antimicrobial
45.4K papers, 1M citations
92% related
DPPH
30.1K papers, 759.9K citations
86% related
Antioxidant
37.9K papers, 1.7M citations
85% related
Silver nanoparticle
31.7K papers, 969.3K citations
83% related
Staphylococcus aureus
27K papers, 779K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,601
20225,254
20211,201
20201,371
20191,171
20181,153