scispace - formally typeset
Search or ask a question
Topic

Antibody

About: Antibody is a research topic. Over the lifetime, 113941 publications have been published within this topic receiving 4130181 citations. The topic is also known as: Ab & antibodies.


Papers
More filters
Journal ArticleDOI
TL;DR: Techniques for producing human monoclonal antibody now appear to be sufficiently advanced to initiate a serological dissection of the humoral immune response to cancer.
Abstract: Human lymphocytes from lymph node, peripheral blood, spleen, and tumor specimens have been fused with the LICR-LON-HMy2 (LICR-2) or SKO-007 human cell lines or the NS-1 mouse myeloma line. Over 75 fusions with the three myeloma-lymphoblastoid lines have been performed. Several factors appeared to improve the fusion outcome, including maintenance of the myeloma-lymphoblastoid lines in logarithmic phase growth at greater than or equal to 95% viability, a delay of 24 hr in the introduction of aminopterin to the fused cells, and preselection of the fetal calf serum used in the medium. For a given number of lymphocytes, fusions with NS-1 produced 5-20 times more clones than fusions with LICR-2 or SKO-007, and LICR-2 produced 4 times as many clones as SKO-007. The percentage of clones secreting human immunoglobulin, the range of immunoglobulin production, and the proportion of IgM, IgA, and IgG secretors were comparable for clones derived from the three myeloma-lymphoblastoid lines. Stable Ig-secreting clones were isolated with approximately equal frequency from LICR-2 and NS-1 fusions. A number of stable clones producing human monoclonal antibodies reacting with cell-surface, cytoplasmic, or nuclear antigens have been isolated from tumor-bearing patients and normal individuals. A surface antigenic system present on normal and malignant cells has been defined with a human monoclonal antibody derived from a patient with breast cancer. Techniques for producing human monoclonal antibody now appear to be sufficiently advanced to initiate a serological dissection of the humoral immune response to cancer.

566 citations

Journal ArticleDOI
TL;DR: The data demonstrate that gene immunization induces a Th1 response that dominates over an ongoing protein-induced Th2 response in an antigen-specific manner, and suggests that immunization with pDNA encoding for allergens may provide a novel type of immunotherapy for allergic diseases.
Abstract: We compared the antigen-specific antibody isotypes and lymphokine secretion by CD4+ T cells in BALB/c mice immunized intradermally with either Escherichia coli beta-galactosidase (beta-gal) or plasmid DNA (pDNA) encoding beta-gal in a cytomegalovirus-based expression vector (pCMV-LacZ). pCMV-LacZ induced mainly IgG2a, whereas beta-gal in saline or alum induced IgG1 and IgE beta-gal-specific antibodies. In addition, splenic CD4+ T helper (Th) cells isolated from pDNA-immunized mice secreted interferon-gamma but not interleukin (IL)-4 and IL-5, whereas Th cells from beta-gal-injected mice secreted IL-4 and IL-5 but not interferon-gamma after in vitro stimulation with antigen. Together these data demonstrate that pDNA immunization induced a T helper type 1 (Th1) response, whereas protein immunization induced a T helper type 2 (Th2) response to the same antigen. Interestingly, priming of mice with pCMV-LacZ prevented IgE antibody formation to a subsequent i.p. beta-gal in alum injection. This effect was antigen-specific, because priming with pCMV-LacZ did not inhibit IgE anti-ovalbumin antibody formation. Most importantly, intradermal immunization with pCMV-LacZ (but not pCMV-OVA) of beta-gal in alum-primed mice caused a 66-75% reduction of the IgE anti-beta-gal titer in 6 weeks. Also, pCMV-LacZ induced specific IgG2a antibody titers and interferon-gamma secretion by Th cells in the beta-gal in alum-primed mice. The data demonstrate that gene immunization induces a Th1 response that dominates over an ongoing protein-induced Th2 response in an antigen-specific manner. This suggests that immunization with pDNA encoding for allergens may provide a novel type of immunotherapy for allergic diseases.

565 citations

Journal ArticleDOI
TL;DR: Evidence is presented that CLA itself is the (or a) lymphocyte homing receptor for ELAM-1, an interaction that may be involved in targeting of CLA+ T cells to cutaneous sites of chronic inflammation.
Abstract: A skin-associated population of memory T lymphocytes, defined by expression of the cutaneous lymphocyte antigen (CLA), binds selectively and avidly to the vascular lectin endothelial cell-leukocyte adhesion molecule 1 (ELAM-1), an interaction that may be involved in targeting of CLA+ T cells to cutaneous sites of chronic inflammation. Here we present evidence that CLA itself is the (or a) lymphocyte homing receptor for ELAM-1. Antigen isolated with anti-CLA monoclonal antibody HECA-452 from human tonsillar lysates avidly binds ELAM-1 transfected mouse cells. Anti-CLA antibody blocks T lymphocyte binding to ELAM-1 transfectants. HECA-452 and ELAM-1 binding to lymphocytes or to isolated tonsillar HECA-452 antigen is abrogated by neuraminidase treatment implying a prominent role for sialic acid in CLA structure and function. The dominant form of CLA on T cells is immunologically distinct from the major neutrophil ELAM-1 ligand, the sialyl Lewis x (sLex) antigen (NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc), which is absent, weakly expressed, or masked on T cells. However, neuraminidase treatment of CLA+ T cells, but not of CLA- T cells, reveals Lewis x (CD15) structures. In combination with the known requirement for terminal NeuAc alpha 2-3Gal and fucose residues attached to N-acetylglucosamine for ELAM-1 and HECA-452 binding, this finding suggests that CLA may comprise an additionally sialylated or otherwise modified form of sLex. The identification of a lymphocyte homing receptor for skin may permit novel approaches to the diagnosis and therapy of cutaneous and inflammatory disorders.

565 citations

Journal ArticleDOI
TL;DR: It is shown that Ig class switching to isotypes other than IgE can occur in vivo in the absence of CD40L, supporting the notion that alternative B cell signaling pathways regulate responses to thymus-independent antigens.
Abstract: Individuals with X-linked hyper-IgM syndrome fail to express functional CD40 ligand (CD40L) and, as a consequence, are incapable of mounting protective antibody responses to opportunistic bacterial infections. To address the role of CD40L in humoral immunity, we created, through homologous recombination, mice deficient in CD40L expression. These mice exhibited no gross developmental deficiencies or health abnormalities and contained normal percentages of B and T cell subpopulations. CD40L-deficient mice did display selective deficiencies in humoral immunity; basal serum isotype levels were significantly lower than observed in normal mice, and IgE was undetectable. Furthermore, the CD40L-deficient mice failed to mount secondary antigen-specific responses to immunization with a thymus-dependent antigen, trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH). By contrast, the CD40L-deficient mice produced antigen-specific antibody of all isotypes except IgE in response to the thymus-independent antigen, DNP-Ficoll. These results underscore the requirement of CD40L for T cell-dependent antibody responses. Moreover, Ig class switching to isotypes other than IgE can occur in vivo in the absence of CD40L, supporting the notion that alternative B cell signaling pathways regulate responses to thymus-independent antigens.

562 citations

Journal ArticleDOI
TL;DR: Hybrid myeloma cell lines secreting monoclonal antibodies to mouse cell surface antigens have been prepared and each antigenic target was analyzed by gel electrophoresis of immunoprecipitated 125I‐labeled cell surface molecules.
Abstract: Hybrid myeloma cell lines secreting monoclonal antibodies to mouse cell surface antigens have been prepared. Spleen cells from a DA rat immunized with B10 mouse spleen cells that had been enriched for T cells were fused to cells from a nonsecreting mouse myeloma line (NSI). The presence in the culture supernatants of antibodies binding to mouse spleen cells was tested by a binding assay with 125I-labeled anti-rat IgG. From a large number of positive cultures, ten independent hybrid clones were purified, each secreting a different antibody. Each antigenic target was analyzed by (a) gel electrophoresis of immunoprecipitated 125I-labeled cell surface molecules, (b) heat stability, (c) strain and species distribution and (d) cross-inhibition of binding of different monoclonal antibodies. It was concluded that the ten monoclonal antibodies regognized four types of antigen. One was the heterophile, heat-stable, Forssman antigen. The second (mol.wt. 210 000) appears to be a major 125I-labeled lymphoid cell surface protein. The third, a minor component of spleen cells, was precipitated as two polypeptides of mol.wt. 190 000 and 105000. Five IgG-secreting clones identify the fourth antigen, a heat-stable, possibly glycolipid component expressed on mouse red blood cells and also on thymocytes. Cross-inhibition studies suggest that these last monoclonal antibodies bind to overlapping, but not identical, determinants. The class and chain composition of the monoclonal antibodies were studied by gel electrophoresis, isoelectric focusing and ability to lyse red blood cells and thymocytes.

562 citations


Network Information
Related Topics (5)
Antigen
170.2K papers, 6.9M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
92% related
Cytokine
79.2K papers, 4.4M citations
92% related
Virus
136.9K papers, 5.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20238,687
202213,454
20213,167
20203,126
20192,578