scispace - formally typeset
Search or ask a question
Topic

Antibody

About: Antibody is a research topic. Over the lifetime, 113941 publications have been published within this topic receiving 4130181 citations. The topic is also known as: Ab & antibodies.


Papers
More filters
Journal ArticleDOI
TL;DR: The discovery that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s), and reconstitution of Sphk1−/−Sphk2+/− bone marrow cells into wild-type hosts failed to reduce plasma S 1P, suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S
Abstract: Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1−/−Sphk2+/− mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1−/−Sphk2+/− bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1−/− mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes...

462 citations

Journal ArticleDOI
14 Nov 2013-Nature
TL;DR: Examination of two new antibodies directed to the CD4-binding site and the V3 region for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian–human immunodeficiency virus (SHIV)-AD8 indicates that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.
Abstract: Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9-14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7 days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5 weeks in some long-term chronically SHIV-infected animals with low CD4(+) T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.

462 citations

Journal ArticleDOI
TL;DR: Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells as mentioned in this paper, and they can control and eradicate infections through a variety of other mechanisms.
Abstract: Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.

462 citations

Journal ArticleDOI
TL;DR: The P.1 trimer adopts exclusively a conformation in which one of the receptor-binding domains is in the "up" position, which is known to facilitate binding to the entry receptor ACE2.

461 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the formation of germinal centers was completely inhibited as a result of treatment with anti-gp39, and adoptive transfer experiments demonstrate thatThe generation of antigen- specific memory B cells is also inhibition as a consequence of blocking gp39-CD40 interactions.
Abstract: gp39, the ligand for CD40 expressed on activated CD4+ T helper cells, is required for the generation of antibody responses to T-dependent (TD) antigens. Treatment of mice with anti-gp39 in vivo inhibits both primary and secondary antibody formation to TD, but not T-independent antigens. However, the role of this receptor-ligand pair in the development of germinal centers and the generation of B cell memory is as yet undefined. Using an antibody to gp39, this study examines the in vivo requirement for gp39-CD40 interactions in the induction of germinal center formation, as well as in the generation of B cell memory. Animals were immunized, treated in vivo with anti-gp39, and evaluated using immunohistochemical staining for the presence of splenic germinal centers 9-11 d after immunization. The results demonstrate that the formation of germinal centers was completely inhibited as a result of treatment with anti-gp39. Moreover, adoptive transfer experiments demonstrate that the generation of antigen-specific memory B cells is also inhibited as a consequence of blocking gp39-CD40 interactions. Taken together, the data demonstrate that gp39-CD40 interactions are critical not only for the generation of antibody responses, but also in the development of B cell memory. Chemicals/CAS: Antigens, CD; Antigens, CD40; Antigens, Differentiation, B-Lymphocyte; CD40 Ligand, 147205-72-9; Membrane Glycoproteins

461 citations


Network Information
Related Topics (5)
Antigen
170.2K papers, 6.9M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
92% related
Cytokine
79.2K papers, 4.4M citations
92% related
Virus
136.9K papers, 5.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20238,687
202213,454
20213,167
20203,126
20192,578