scispace - formally typeset
Search or ask a question
Topic

Antibody

About: Antibody is a research topic. Over the lifetime, 113941 publications have been published within this topic receiving 4130181 citations. The topic is also known as: Ab & antibodies.


Papers
More filters
Journal ArticleDOI
TL;DR: IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production, suggesting that common signaling pathways may be involved.
Abstract: Recently the cDNA encoding interleukin 13 (IL-13), a T-cell-derived cytokine, was cloned and expressed. The present study demonstrates that IL-13 induces IgG4 and IgE synthesis by human B cells. IL-13-induced IgG4 and IgE synthesis by unfractionated peripheral blood mononuclear cells and highly purified B cells cultured in the presence of activated CD4+ T cells or their membranes. IL-13-induced IgG4 and IgE synthesis is IL-4-independent, since it was not affected by neutralizing anti-IL-4 monoclonal antibody. Highly purified, surface IgD+ B cells could also be induced to produce IgG4 and IgE by IL-13, indicating that the production of these isotypes reflected IgG4 and IgE switching and not a selective outgrowth of committed B cells. IL-4 and IL-13 added together at optimal concentrations had no additive or synergistic effect, suggesting that common signaling pathways may be involved. This notion is supported by the observation that IL-13, like IL-4, induced CD23 expression on B cells and enhanced CD72, surface IgM, and class II major histocompatibility complex antigen expression. In addition, like IL-4, IL-13 induced germ-line IgE heavy-chain gene transcription in highly purified B cells. Collectively, our data indicate that IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production.

1,005 citations

Journal ArticleDOI
14 Jul 1995-Cell
TL;DR: The cloning of two related PfEMP1 genes from the Malayan Camp parasite strain are described and the molecular basis for antigenic variation in malaria and adherence of infected erythrocytes to host cells can now be pursued.

1,005 citations

Journal ArticleDOI
TL;DR: The regulation of antibody production is linked to the generation and maintenance of plasmablasts and plasma cells from their B cell precursors, and the terminal differentiation of B cells can be described as a simple probabilistic process governed by a central gene-regulatory network and modified by environmental stimuli.
Abstract: The regulation of antibody production is linked to the generation and maintenance of plasmablasts and plasma cells from their B cell precursors. Plasmablasts are the rapidly produced and short-lived effector cells of the early antibody response, whereas plasma cells are the long-lived mediators of lasting humoral immunity. An extraordinary number of control mechanisms, at both the cellular and molecular levels, underlie the regulation of this essential arm of the immune response. Despite this complexity, the terminal differentiation of B cells can be described as a simple probabilistic process that is governed by a central gene-regulatory network and modified by environmental stimuli.

1,005 citations

Journal ArticleDOI
02 Dec 2005-Science
TL;DR: The mechanism underlying this long-standing observation of subclass dominance in function is provided by the differential affinities of IgG subclasses for specific activating IgG Fc receptors compared with their affinITIES for the inhibitory IgGFc receptor.
Abstract: Subclasses of immunoglobulin G (IgG) display substantial differences in their ability to mediate effector responses, contributing to variable activity of antibodies against microbes and tumors. We demonstrate that the mechanism underlying this long-standing observation of subclass dominance in function is provided by the differential affinities of IgG subclasses for specific activating IgG Fc receptors compared with their affinities for the inhibitory IgG Fc receptor. The significant differences in the ratios of activating-to-inhibitory receptor binding predicted the in vivo activity. We suggest that these highly predictable functions assigned by Fc binding will be an important consideration in the design of therapeutic antibodies and vaccines.

999 citations

Journal ArticleDOI
TL;DR: The properties of mAb GK1.5 (complement fixation, reactivity with all mouse strains tested, profound blocking of all class II MHC antigen-specific functions by murine T cells, usefulness for FACS analyses, and usefulness for immuno-precipitation/SDS-PAGE analyses) make it suitable for investigating both the role ofclass II M HC antigen-reactive T cells in various immunological phenomena and the mechanistic basis, at the molecular level
Abstract: We describe here the properties of mAb GK1.5, which recognizes a cell surface molecule designated L3T4; the determinant on L3T4 recognized by mAb GK1.5 is designated L3T4a. We present evidence here that: i) the expression of L3T4a by murine T cell clones correlates primarily with class II MHC antigen-reactivity; ii) mAb GK1.5 blocks all class II MHC antigen-specific functions (cytolysis, proliferation, release of lymphokines) by murine class II MHC antigen-reactive T cell clones, although there appears to be clonal heterogeneity in the degree to which these functions are blocked by mAb GK1.5; iii) mAb GK1.5 blocks class II MHC antigen-specific release of IL-2 from cloned T cell hybridomas by blocking class II MHC antigen-specific binding; and iv) L3T4 is very similar to the human Leu3/T4 antigen. The properties of mAb GK1.5 (complement fixation, reactivity with all mouse strains tested, profound blocking of all class II MHC antigen-specific functions by murine T cells, usefulness for FACS analyses, and usefulness for immuno-precipitation/SDS-PAGE analyses) make it suitable for investigating both the role of class II MHC antigen-reactive T cells in various immunological phenomena and the mechanistic basis, at the molecular level, of class II MHC antigen-reactivity by murine T cells.

992 citations


Network Information
Related Topics (5)
Antigen
170.2K papers, 6.9M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
92% related
Cytokine
79.2K papers, 4.4M citations
92% related
Virus
136.9K papers, 5.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20238,687
202213,454
20213,167
20203,126
20192,578