scispace - formally typeset
Search or ask a question

Showing papers on "Antigen published in 1993"


Journal ArticleDOI
22 Oct 1993-Cell
TL;DR: The results indicate that the bowel inflammation in the mutants originates from uncontrolled immune responses stimulated by enteric antigens and that IL-10 is an essential immunoregulator in the intestinal tract.

4,196 citations


Journal ArticleDOI
23 Apr 1993-Science
TL;DR: This regulatory pathway may have evolved to enable innate immune cells, through interactions with microbial pathogens, to direct development of specific immunity toward the appropriate TH1 phenotype.
Abstract: Development of the appropriate CD4+ T helper (TH) subset during an immune response is important for disease resolution. With the use of naive, ovalbumin-specific alpha beta T cell receptor transgenic T cell, it was found that heat-killed Listeria monocytogenes induced TH1 development in vitro through macrophage production of interleukin-12 (IL-12). Moreover, inhibition of macrophage production of IL-12 may explain the ability of IL-10 to suppress TH1 development. Murine immune responses to L. monocytogenes in vivo are of the appropriate TH1 phenotype. Therefore, this regulatory pathway may have evolved to enable innate immune cells, through interactions with microbial pathogens, to direct development of specific immunity toward the appropriate TH phenotype.

3,193 citations


Journal ArticleDOI
03 Jun 1993-Nature
TL;DR: The presence of considerable amounts of IgG-like material of Mr 100K in the serum of the camel, which is composed of heavy-chain dimers and devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, opens new perspectives in the engineering of antibodies.
Abstract: Random association of VL and VH repertoires contributes considerably to antibody diversity. The diversity and the affinity are then increased by hypermutation in B cells located in germinal centres. Except in the case of 'heavy chain' disease, naturally occurring heavy-chain antibodies have not been described, although antigen binding has been demonstrated for separated heavy chains or cloned VH domains. Here we investigate the presence of considerable amounts of IgG-like material of M(r) 100K in the serum of the camel (Camelus dromedarius). These molecules are composed of heavy-chain dimers and are devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, a finding that calls into question the role of light chains in the camel. Camel heavy-chain IgGs lack CH1, which in one IgG class might be structurally replaced by an extended hinge. Heavy-chain IgGs are a feature of all camelids. These findings open new perspectives in the engineering of antibodies.

2,863 citations


Journal ArticleDOI
26 Aug 1993-Nature
TL;DR: The findings suggest that the Fas antigen is important in programmed cell death in the liver, and may be involved in fulminant hepatitis in some cases.
Abstract: DURING mammalian development, many cells are programmed to die1,2 most mediated by apoptosis3. The Fas antigen4 coded by the structural gene for mouse lymphoproliferation mutation (lpr)5,6, is a cell surface protein belonging to the tumour necrosis factor/nerve growth factor receptor family7,8, and mediates apoptosis7. The Fas antigen messenger RNA is expressed in the thymus, liver, heart, lung and ovary8. We prepared a monoclonal antibody against mouse Fas antigen, which immunoprecipitated the antigen (Mr 45K) and had cytolytic activity against cell lines expressing mouse Fas antigen. We report here that staining of mouse thymocytes with the antibody indicated that thymocytes from the wild-type and lprcg mice expressed the Fas antigen, whereas little expression of the Fas antigen was found in lpr mice. Intraperitoneal administration of the anti-Fas antibody into mice rapidly killed the wild-type mice but neither lpr nor lprcg mice. Biochemical, histological and electron microscope analyses indicated severe damage of the liver by apoptosis. These findings suggest that the Fas antigen is important in programmed cell death in the liver, and may be involved in fulminant hepatitis in some cases.

1,932 citations


Journal ArticleDOI
19 Mar 1993-Science
TL;DR: IFN-gamma is essential for the function of several cell types of the murine immune system and has impaired production of macrophage antimicrobial products and reduced expression of Macrophage major histocompatibility complex class II antigens.
Abstract: Interferon-gamma (IFN-gamma) is a pleiotrophic cytokine with immunomodulatory effects on a variety of immune cells. Mice with a targeted disruption of the IFN-gamma gene were generated. These mice developed normally and were healthy in the absence of pathogens. However, mice deficient in IFN-gamma had impaired production of macrophage antimicrobial products and reduced expression of macrophage major histocompatibility complex class II antigens. IFN-gamma-deficient mice were killed by a sublethal dose of the intracellular pathogen Mycobacterium bovis. Splenocytes exhibited uncontrolled proliferation in response to mitogen and alloantigen. After a mixed lymphocyte reaction, T cell cytolytic activity was enhanced against allogeneic target cells. Resting splenic natural killer cell activity was reduced in IFN-gamma-deficient mice. Thus, IFN-gamma is essential for the function of several cell types of the murine immune system.

1,782 citations


Journal ArticleDOI
22 Oct 1993-Cell
TL;DR: The data provide evidence for a primary role of the immune system in the etiology of ulcerative colitis and strongly suggest that the disease results from an abnormal immune response to a normal antigenic stimulus.

1,741 citations


Journal ArticleDOI
19 Mar 1993-Science
TL;DR: Mutant mice offer the possibility for the further elucidation of IFN-gamma-mediated functions by transgenic cell- or tissue-specific reconstitution of a functional receptor.
Abstract: Interferon-gamma (IFN-gamma) exerts pleiotropic effects, including antiviral activity, stimulation of macrophages and natural killer cells, and increased expression of major histocompatibility complex antigens. Mice without the IFN-gamma receptor had no overt anomalies, and their immune system appeared to develop normally. However, mutant mice had a defective natural resistance, they had increased susceptibility to infection by Listeria monocytogenes and vaccinia virus despite normal cytotoxic and T helper cell responses. Immunoglobulin isotype analysis revealed that IFN-gamma is necessary for a normal antigen-specific immunoglobulin G2a response. These mutant mice offer the possibility for the further elucidation of IFN-gamma-mediated functions by transgenic cell- or tissue-specific reconstitution of a functional receptor.

1,583 citations


Journal ArticleDOI
25 Mar 1993-Nature
TL;DR: An extraordinarily large number of latently infected CD4+ lymphocytes and macrophages are discovered throughout the lymphoid system from early to late stages of infection, and the extracellular association of HIV with follicular dendritic cells is confirmed.
Abstract: ANIMAL and human lentiviruses elude host defences by establishing covert infections and eventually cause disease through cumulative losses of cells that die with activation of viral gene expression1–5. We used polymerase chain reaction in situ double-label methods6,7 to determine how many CD4+ lymphocytes are latently infected by human immunodeficiency virus (HIV) in patient lymph nodes and whether the pool of infected cells is large enough to account for immune depletion through continual activation of viral gene expression and attrition of cells responding to antigens. We discovered an extraordinarily large number of latently infected CD4+ lymphocytes and macrophages throughout the lymphoid system from early to late stages of infection, and confirmed8–14 the extracellular association of HIV with follicular dendritic cells. Follicular dendritic cells may transmit infection to cells as they migrate through lymphoid follicles. Latently infected lymphocytes and macrophages constitute an intracellular reservoir large enough ultimately to contribute to much of the immune depletion in AIDS, and represent a difficult problem that must be resolved in developing effective treatments and protective vaccine.

1,457 citations


Patent
12 Nov 1993
TL;DR: In this paper, therapeutic treatment protocols designed for the treatment of B cell lymphoma were presented, which are based upon therapeutic strategies which include the use of administration of immunologically active mouse/human chimeric anti-CD20 antibodies, radiolabeled anti -CD20 antibody, and cooperative strategies comprising the using of chimeric antibody and radio-labeled antibody.
Abstract: Disclosed herein are therapeutic treatment protocols designed for the treatment of B cell lymphoma. These protocols are based upon therapeutic strategies which include the use of administration of immunologically active mouse/human chimeric anti-CD20 antibodies, radiolabeled anti-CD20 antibodies, and cooperative strategies comprising the use of chimeric anti-CD20 antibodies and radiolabeled anti-CD20 antibodies.

1,359 citations


Journal ArticleDOI
TL;DR: This work designed and constructed chimeric genes composed of a single-chain Fv domain of an antibody linked with gamma or zeta chains, the common signal-transducing subunits of the immunoglobulin receptor and the TCR, which could be expressed as functional surface receptors in a cytolytic T-cell hybridoma.
Abstract: The generation of tumor-specific lymphocytes and their use in adoptive immunotherapy is limited to a few malignancies because most spontaneous tumors are very weak or not at all immunogenic. On the other hand, many anti-tumor antibodies have been described which bind tumor-associated antigens shared among tumors of the same histology. Combining the variable regions (Fv) of an antibody with the constant regions of the T-cell receptor (TCR) chains results in chimeric genes endowing T lymphocytes with antibody-type specificity, potentially allowing cellular adoptive immunotherapy against types of tumors not previously possible. To generalize and extend this approach to additional lymphocyte-activating molecules, we designed and constructed chimeric genes composed of a single-chain Fv domain (scFv) of an antibody linked with gamma or zeta chains, the common signal-transducing subunits of the immunoglobulin receptor and the TCR. Such chimeric genes containing the Fv region of an anti-trinitophenyl antibody could be expressed as functional surface receptors in a cytolytic T-cell hybridoma. They triggered interleukin 2 secretion upon encountering antigen and mediated non-major-histocompatibility-complex-restricted hapten-specific target cell lysis. Such chimeric receptors can be exploited to provide T cells and other effector lymphocytes, such as natural killer cells, with antibody-type recognition directly coupled to cellular activation.

1,345 citations


Journal ArticleDOI
TL;DR: The nucleotide sequence and expression of an immunodominant antigen of H. pylori and the immune response to the antigen during disease are reported and it is suggested that only bacteria harboring this protein are associated with disease.
Abstract: Helicobacter pylori has been associated with gastritis, peptic ulcer, and gastric adenocarcinoma. We report the nucleotide sequence and expression of an immunodominant antigen of H. pylori and the immune response to the antigen during disease. The antigen, named CagA (cytotoxin-associated gene A), is a hydrophilic, surface-exposed protein of 128 kDa produced by most clinical isolates. The size of the cagA gene and its protein varies in different strains by a mechanism that involves duplication of regions within the gene. Clinical isolates that do not produce the antigen do not have the gene and are unable to produce an active vacuolating cytotoxin. An ELISA to detect the immune response against a recombinant fragment of this protein detects 75.3% of patients with gastroduodenal diseases and 100% of patients with duodenal ulcer (P < 0.0005), suggesting that only bacteria harboring this protein are associated with disease.

Journal ArticleDOI
01 Nov 1993-Nature
TL;DR: It is reported here that a T-helper-1 response to glutamate decarboxylase develops in NOD mice at the same time as the onset of insulitis, and it is suggested that spontaneous autoimmune disease can be prevented by tolerization to the initiating target antigen.
Abstract: INSULIN-DEPENDENT diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice results from the T-lymphocyte-mediated destruction of the insulin-producing pancreatic β-cells and serves as a model for human IDDM1. Whereas a number of autoantibodies are associated with IDDM2, it is unclear when and to what β-cell antigens pathogenic T cells become activated during the disease process. We report here that a T-helper-1 (Thl) response to glutamate decarboxylase develops in NOD mice at the same time as the onset of insulitis. This response is initially limited to a confined region of glutamate decarboxylase, but later spreads intramolecularly to additional determinants. Subsequently, T-cell reactivity arises to other β-cell antigens, consistent with intermolecular diversification of the response. Prevention of the spontaneous anti-glutamate decarboxylase response, by tolerization of glutamate decarboxylase-reactive T cells, blocks the development of T-cell autoimmunity to other β-cell antigens, as well as insulitis and diabetes. Our data suggest that (1) glutamate decarboxylase is a key target antigen in the induction of murine IDDM; (2) autoimmunity to glutamate decarboxylase triggers T-cell responses to other β-cell antigens, and (3) spontaneous autoimmune disease can be prevented by tolerization to the initiating target antigen.

Journal ArticleDOI
TL;DR: The importance of conformational changes accompanying peptide binding that affect subunit stability of MHC molecules, and the relationship between these changes and the handling of proteins by intracellular chaperones, are emphasized as key features in the operation of the class I and class II presentation pathways.
Abstract: T lymphocytes with alpha beta receptors recognize antigen in association with the polymorphic products of the class I and class II loci of the major histocompatibility complex (MHC). This presentation of antigen results from the intracellular generation of protein fragments, and the binding and transport to the cell surface of these peptides in stable association with the MHC class I and class II molecules. Each class of MHC molecule appears specialized for capture of peptides present in a particular intracellular compartment. We describe here the structural basis of peptide-MHC molecule interaction, the differences in biochemical behavior that focus the two classes of MHC molecules on peptides of distinct size and location, and the cell biology of MHC molecule transport, peptide generation, and intracellular movement. The importance of conformational changes accompanying peptide binding that affect subunit stability of MHC molecules, and the relationship between these changes and the handling of proteins by intracellular chaperones, are emphasized as key features in the operation of the class I and class II presentation pathways.

Journal ArticleDOI
TL;DR: In this paper, the authors show that in mice transgenic for anti-H-2Kk,b antibody genes, a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M+/idiotype+ immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors.
Abstract: A central paradigm of immunology is clonal selection: lymphocytes displaying clonally distributed antigen receptors are generated and subsequently selected by antigen for growth or elimination. Here we show that in mice transgenic for anti-H-2Kk,b antibody genes, in which a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M+/idiotype+ immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors. Transgenic bone marrow B cells encountering membrane-bound Kb or Kk proteins modify their receptors by expressing the V(D)J recombinase activator genes and assembling endogenously encoded immunoglobulin light chain variable genes. This (auto)antigen-directed change in the specificity of newly generated lymphocytes is termed receptor editing.

Journal ArticleDOI
TL;DR: The cloning of a cDNA is reported that directs the expression of the antigen recognized by HLA-A2 melanoma patients, and this cDNA corresponds to the transcript of the tyrosinase gene.
Abstract: Lymphocytes of melanoma patients can be restimulated in vitro with autologous tumor cells to generate antitumor cytolytic T lymphocytes (CTL). Previous reports have indicated that, when such CTL are obtained from HLA-A2 melanoma patients, they often display broad reactivity on A2 melanoma cell lines. Such antitumor CTL clones, which appeared to recognize the same antigen, were isolated from two patients. We report here the cloning of a cDNA that directs the expression of the antigen recognized by these CTL. This cDNA corresponds to the transcript of the tyrosinase gene. The gene was found to be active in all tested melanoma samples and in most melanoma cell lines. Among normal cells, only melanocytes appear to express the gene. The tyrosinase antigen presented by HLA-A2 may therefore constitute a useful target for specific immunotherapy of melanoma. But possible adverse effects of antityrosinase immunization, such as the destruction of normal melanocytes and its consequences, will have to be examined before clinical pilot studies can be undertaken.

Journal ArticleDOI
TL;DR: Evidence to be described suggests that CD4 alpha/beta T cells, CD8 alpha/ beta T cells and gamma/delta T cells which interact with each other and with macrophages contribute to acquired resistance against as well as pathogenesis of intracellular bacterial infections.
Abstract: Intracellular bacteria are endowed with the capacity to survive and replicate inside mononuclear phagocytes (MP) and, sometimes, within certain other host cells. MP are potent effectors cells that are able to engulf and kill many bacterial invaders. Therefore, intracellular bacteria had to exploit potent evasion mechanisms that allow their survival in this hostile environment. At the early phase, natural killer cells activate antibacterial defense mechanisms. During intracellular persistence, microbial proteins are processed and presented, thus initiating T cell activation. By secreting interleukins, CD4 alpha/beta TH1 cells activate MP, converting them from a habitat to a potent effector cell; TH2-dependent activities seem to be of minor importance. Cytolytic CD8 T cells represent a further element of protection. In the case of Listeria monocytogenes, the gene products responsible for virulence and for the introduction of antigens into the MHC class I pathway are being characterized. Increasing evidence points to a role of gamma/delta T lymphocytes in antibacterial immunity, although their precise function remains to be elucidated. Protection in the host is a local event focussed on granulomatous lesions. MP accumulate at the site of microbial growth and become activated through the CD4 T cell-interleukin-MP axis. Lysis of incapacitated MP and other host cells by CD8 T cells allows release and subsequent uptake by more efficient phagocytes, thus contributing to host protection. At the same time, lysis of host cells promotes microbial dissemination and causes tissue injury, which represent pathogenic aspects of the same mechanism. Research on the immune response against intracellular bacteria not only helps us to better understand how the immune system deals with "viable antigens" in constant trans-mutation, it also forms the basis for the rational design of control measures for major health problems.

Journal ArticleDOI
04 Nov 1993-Nature
TL;DR: The results indicate that the spontaneous response to β-cell antigens arises very early in life and that the anti-GAD immune response has a critical role in the disease process during this period.
Abstract: KNOWING the autoantigen target(s) in an organ-specific autoimmune disease is essential to understanding its pathogenesis. Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease characterized by lymphocytic infiltration of the islets of Langerhans (insulitis) and destruction of insulin-secreting pancreatic β-cells1. Several β-cell proteins have been identified as autoantigens, but their importance in the diabetogenic process is not known2. The non-obese diabetic (NOD) mouse is a murine model for spontaneous IDDM3. Here we determine the temporal sequence of T-cell and antibody responses in NOD mice to a panel of five murine β-cell antigens and find that antibody and T-cell responses specific for the two isoforms of glutamic acid decarboxylase (GAD) are first detected in 4-week-old NOD mice. This GAD-specific reactivity coincides with the earliest detectable response to an islet extract, and with the onset of insulitis. Furthermore, NOD mice receiving intrathymic injections of GAD65 exhibit markedly reduced T-cell proliferative responses to GAD and to the rest of the panel, in addition to remaining free of diabetes. These results indicate that the spontaneous response to β-cell antigens arises very early in life and that the anti-GAD immune response has a critical role in the disease process during this period.

Journal ArticleDOI
TL;DR: IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production, suggesting that common signaling pathways may be involved.
Abstract: Recently the cDNA encoding interleukin 13 (IL-13), a T-cell-derived cytokine, was cloned and expressed. The present study demonstrates that IL-13 induces IgG4 and IgE synthesis by human B cells. IL-13-induced IgG4 and IgE synthesis by unfractionated peripheral blood mononuclear cells and highly purified B cells cultured in the presence of activated CD4+ T cells or their membranes. IL-13-induced IgG4 and IgE synthesis is IL-4-independent, since it was not affected by neutralizing anti-IL-4 monoclonal antibody. Highly purified, surface IgD+ B cells could also be induced to produce IgG4 and IgE by IL-13, indicating that the production of these isotypes reflected IgG4 and IgE switching and not a selective outgrowth of committed B cells. IL-4 and IL-13 added together at optimal concentrations had no additive or synergistic effect, suggesting that common signaling pathways may be involved. This notion is supported by the observation that IL-13, like IL-4, induced CD23 expression on B cells and enhanced CD72, surface IgM, and class II major histocompatibility complex antigen expression. In addition, like IL-4, IL-13 induced germ-line IgE heavy-chain gene transcription in highly purified B cells. Collectively, our data indicate that IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production.

Journal ArticleDOI
04 Nov 1993-Nature
TL;DR: It is indicated that B70 is a second ligand for CD28 and CTLA-4 and may play an important role for costimulation of T cells in a primary immune response.
Abstract: The membrane antigen B7/BB1 (refs 1, 2) is expressed on activated B cells, macrophages and dendritic cells, and binds to a counter-receptor, CD28, expressed on T lymphocytes and thymocytes. Interaction between CD28 and B7 results in potent costimulation of T-cell activation initiated through the CD3/T-cell receptor complex. Discrepancies between results with anti-CD28 and anti-B7 antibodies have suggested the existence of a second ligand for CD28 and CTLA-4 (refs 3, 6-8). We have generated a monoclonal antibody, IT2, that reacts with a 70K glycoprotein (B70). B70 complementary DNA was cloned from a B-lymphoblastoid cell line library and encodes a new protein of the immunoglobulin superfamily with limited homology to B7. B70 is expressed on resting monocytes and dendritic cells and on activated, but not resting, T, NK and B lymphocytes. IT2 substantially inhibited the binding of a CTLA4-immunoglobulin fusion protein to human B-lymphoblastoid cell lines and, together with anti-B7 antibody, completely blocked CTLA-4 binding. Further IT2 efficiently inhibited primary allogeneic mixed lymphocyte responses. These findings indicate that B70 is a second ligand for CD28 and CTLA-4 and may play an important role for costimulation of T cells in a primary immune response.

Journal ArticleDOI
TL;DR: A 68-amino acid portion of the signal-transducing domain significantly conserved in the Fas antigen as well as in the type I tumor necrosis factor receptor was considered to be the novel protein domain required for apoptotic signal transduction.

Journal ArticleDOI
TL;DR: Most of the peptides derived from endogenous proteins that intersect the endocytic/class II pathway, even though class II molecules are thought to function mainly in the presentation of exogenous foreign peptide antigens, were derived from major histocompatibility complex-related molecules.
Abstract: Naturally processed peptides were acid extracted from immunoaffinity-purified HLA-DR2, DR3, DR4, DR7, and DR8. Using the complementary techniques of mass spectrometry and Edman microsequencing, > 200 unique peptide masses were identified from each allele, ranging from 1,200 to 4,000 daltons (10-34 residues in length), and a total of 201 peptide sequences were obtained. These peptides were derived from 66 different source proteins and represented sets nested at both the amino- and carboxy-terminal ends with an average length of 15-18 amino acids. Strikingly, most of the peptides (> 85%) were derived from endogenous proteins that intersect the endocytic/class II pathway, even though class II molecules are thought to function mainly in the presentation of exogenous foreign peptide antigens. The predominant endogenous peptides were derived from major histocompatibility complex-related molecules. A few peptides derived from exogenous bovine serum proteins were also bound to every allele. Four prominent promiscuous self-peptide sets (capable of binding to multiple HLA-DR alleles) as well as 84 allele-specific peptide sets were identified. Binding experiments confirmed that the promiscuous peptides have high affinity for the binding groove of all HLA-DR alleles examined. A potential physiologic role for these endogenous self-peptides as immunomodulators of the cellular immune response is discussed.

Journal ArticleDOI
18 Mar 1993-Nature
TL;DR: Recombinant IL-13 protein inhibits inflammatory cytokine production induced by lipopolysaccharide in human peripheral blood monocytes, and synergizes with IL-2 in regulating interferon-γ synthesis in large granular lymphocytes.
Abstract: The discovery of new cytokines normally relies on a prior knowledge of at least one of their biological effects, which is used as a criterion either for the purification of the protein or for the isolation of the complementary DNA by expression cloning. However, the redundancy of cytokine activities complicates the discovery of novel cytokines in this way, and the pleiotropic nature of many cytokines means that the principal activities of a new cytokine may bear little relation to that used for its isolation. We have adopted an alternative approach which relies on differential screening of an organized subtracted cDNA library from activated peripheral blood mononuclear cells, using the inducibility of lymphokine messenger RNAs by anti-CD28 as a primary screening criterion. The ligation of the CD28 antigen on the T lymphocyte by a surface antigen, B7/BB-1, expressed on activated B lymphocytes and monocytes is a key step in the activation of T lymphocytes and the accumulation of lymphokine mRNAs. Here we report the discovery by molecular cloning of a new interleukin (interleukin-13 or IL-13) expressed in activated human T lymphocytes. Recombinant IL-13 protein inhibits inflammatory cytokine production induced by lipopolysaccharide in human peripheral blood monocytes. Moreover, it synergizes with IL-2 in regulating interferon-gamma synthesis in large granular lymphocytes. Recent mapping of the IL-13 gene shows that it is closely linked to the IL-4 gene on chromosome 5q 23-31 (ref. 4). Interleukin-13 may be critical in regulating inflammatory and immune responses.

Journal ArticleDOI
TL;DR: It is concluded that surface expression of alpha 4 integrin is important in CD4 T cell entry into brain parenchyma and may be crucial in allowing activated effector T cells to leave blood and enter the brain and other tissues to clear infections.
Abstract: Cloned CD4 T cell lines that recognize the Ac1-16 peptide of myelin basic protein bound to I-Au were isolated and used to analyze the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). T helper type 1 (Th1) clones induced disease, while Th2 clones did not. Using variants of a single cloned Th1 line, the surface expression of alpha 4 integrins (very late antigen 4 [VLA-4]) was identified as a major pathogenic factor. Encephalitogenic clones and nonencephalitogenic variants differ by 10-fold in their level of surface expression of alpha 4 integrin and in their ability to bind to endothelial cells and recombinant vascular cell adhesion molecule 1 (VCAM-1). The alpha 4 integrin-high, disease-inducing cloned Th1 T cells enter brain parenchyma in abundance, while alpha 4 integrin-low, nonencephalitogenic Th1 cells do not. Moreover, antibodies to alpha 4 integrin, its ligand VCAM-1, and intercellular adhesion molecule 1 all influence the pathogenicity of this encephalitogenic clone in vivo. The importance of the expression of VLA-4 for encephalitogenicity is not unique to cloned T cell lines, as similar results were obtained using myelin basic protein-primed lymph node T cells. alpha 4 integrin levels did not affect antigen responsiveness or production of the Th1 cytokines interleukin 2, interferon gamma, and lymphotoxin/tumor necrosis factor beta; and antibodies against alpha 4 integrin did not block antigen recognition in vitro. Thus, we conclude that surface expression of alpha 4 integrin is important in CD4 T cell entry into brain parenchyma. A general conclusion of these studies is that alpha 4 integrins may be crucial in allowing activated effector T cells to leave blood and enter the brain and other tissues to clear infections.

Journal ArticleDOI
TL;DR: In this paper, the structural constraints for binding a peptide to MHC class II molecules are considered, and the experimental evidence pertaining to this choice is reviewed for "MHC-guided processing", where the unfolding antigen can compete for determinants at an early stage of processing when the antigen is close to its original length.
Abstract: In this review, we first consider the inherent structural constraints for binding of a peptide to MHC class II molecules. Such parameters at the site of TCR recognition are dependent upon the efficient generation of the antigenic determinant during natural processing of the whole protein antigen. Strikingly, only a minor fraction of such potential determinants on an antigen are presented in an immunodominant manner, while the remaining peptides are silent (cryptic). Why one determinant is selected while the majority are neglected is still unresolved, but we review the experimental evidence pertaining to this choice. Thus, features of the antigen remote from the actual determinant can either steer processing toward disclosure or revelation of a determinant, or interfere with the binding of peptides to MHC (hinderotopy). The evidence is reviewed for "MHC-guided processing," where the unfolding antigen binds at an early stage to an MHC molecule through its most available and affine agretope and then is trimmed down to final size, while the rest of the molecule, including cryptic determinants, is discarded. Different MHC molecules can compete for determinants at an early stage of processing when the antigen is close to its original length. There are shifts in the hierarchy of display of dominant and cryptic determinants, and these shifts relate to local inflammatory states, to changes in the state or composition of the APC population, and to aspects of exogenous vs endogenous processing. The impact of this differential display of determinants on tolerance and autoimmunity is discussed.

Journal ArticleDOI
29 Jan 1993-Cell
TL;DR: It is reported that patients with hyper-IgM syndrome (HIM) have a defective gp39-CD40 interaction, which suggests that a defect in gp39 is the basis of X-linked HIM.

Journal ArticleDOI
TL;DR: It is concluded that Fas was involved in the Ca(2+)-independent component of cytotoxicity mediated by at least two sources of T cells, namely nonantigen-specific in vitro activated hybridoma cells, and antigen- specific in vivo raised peritoneal exudate lymphocytes.
Abstract: Mechanisms of T cell-mediated cytotoxicity remain poorly defined at the molecular level. To investigate some of these mechanisms, we used as target cells, on the one hand, thymocytes from lpr and gld mouse mutants, and on the other hand, L1210 cells transfected or not with the apoptosis-inducing Fas molecule. These independent mutant or transfectant-based approaches both led to the conclusion that Fas was involved in the Ca(2+)-independent component of cytotoxicity mediated by at least two sources of T cells, namely nonantigen-specific in vitro activated hybridoma cells, and antigen-specific in vivo raised peritoneal exudate lymphocytes. Thus, in these cases, T cell-mediated cytotoxicity involved transduction via Fas of the target cell death signal.

Journal ArticleDOI
TL;DR: Preliminary results of experiments with gene knock out mice suggest that gamma delta T cells do not function as helper cells in humoral immune responses but may complement alpha beta T cells in the defense against various microorganisms.
Abstract: Before TCR rearrangements, T cell progenitors are committed not only to the alpha beta and gamma delta T cell lineage but also to various subsets of both lineages. In the mouse, distinct gamma delta T cell subsets can develop in the fetal thymus, the adult thymus, or independently of a thymus, probably in intestinal epithelia. The two subsets that develop in the fetal thymus home to and are maintained throughout adult life in the skin and the mucosa of the uterus, vagina, and tongue. They are monospecific. This unusual restriction in receptor repertoires is the result of severe limitations in the generation of diversity in the fetal progenitors of these subsets and the thymic selection. After birth, one gamma delta T cell subset appears in the blood, spleen, and lymph nodes and one in the intestinal epithelia. The receptor repertoires of these subsets are characterized by the preferential usage of particular V gamma gene segments and extensive junctional diversity. Several murine and human gamma delta T cell clones have been shown to recognize classical MHC class I and class II proteins or MHC class I-like proteins, and in very few cases the presented peptides are known. We suspect that the various murine gamma delta T cell subsets interact with different antigen presenting cells which utilize different antigen presenting proteins and reside in different tissues. The function of gamma delta T cells remains unknown. Preliminary results of experiments with gene knock out mice which lack either alpha beta T cells or gamma delta T cells or both suggest that gamma delta T cells do not function as helper cells in humoral immune responses but may complement alpha beta T cells in the defense against various microorganisms.

Patent
19 Oct 1993
TL;DR: In this paper, a family of synthetic proteins having affinity for a preselected antigen is characterized by one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BABS).
Abstract: Disclosed are a family of synthetic proteins having affinity for a preselected antigen. The proteins are characterized by one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BABS). The sites comprise 1) non-covalently associated or disulfide bonded synthetic V H and V L dimers, 2) V H -V L or V L -V H single chains wherein the V H and V L are attached by a polypeptide linker, or 3) individuals V H or V L domains. The binding domains comprise linked CDR and FR regions, which may be derived from separate immunoglobulins. The proteins may also include other polypeptide sequences which function e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization media or radioactive atom. Methods are disclosed for producing the proteins, for designing BABS having any specificity that can be elicited by in vivo generation of antibody, and for producing analogs thereof.

Journal ArticleDOI
01 Oct 1993-Science
TL;DR: The pathogenic human parvovirus B19 replicates only in erythroid progenitor cells and was shown to bind to blood-group P antigen, as measured by hemagglutination, which has implications for understanding the pathogenesis of parVovirus infections and for the use ofParvoviruses in gene therapy.
Abstract: The pathogenic human parvovirus B19 replicates only in erythroid progenitor cells. This virus was shown to bind to blood-group P antigen, as measured by hemagglutination. Erythrocytes lacking P antigen were not agglutinated with B19. Purified P antigen (globoside) blocked the binding of the virus to erythroid cells and the infectivity of the virus in a hematopoietic colony assay. Target cells were protected from infection by preincubation with monoclonal antibody to globoside. Knowledge of a parvovirus receptor has implications for understanding the pathogenesis of parvovirus infections and for the use of parvoviruses in gene therapy.

Journal ArticleDOI
TL;DR: Computer analysis of the nucleic acid and the deduced amino acid sequence of the Ki-67 antigen confirmed that the cDNA encodes for a nuclear and short-lived protein without any significant homology to known sequences.
Abstract: The antigen defined by mAb Ki-67 is a human nuclear protein the expression of which is strictly associated with cell proliferation and which is widely used in routine pathology as a "proliferation marker" to measure the growth fraction of cells in human tumors. Ki-67 detects a double band with apparent molecular weights of 395 and 345 kD in immunoblots of proteins from proliferating cells. We cloned and sequenced the full length cDNA, identified two differentially spliced isoforms of mRNA with open reading frames of 9,768 and 8,688 bp encoding for this cell proliferation-associated protein with calculated molecular weights of 358,761 D and 319,508 D, respectively. New mAbs against a bacterially expressed part and a synthetic polypeptide deduced from the isolated cDNA react with the native Ki-67 antigen, thus providing a circle of evidence that we have cloned the authentic Ki-67 antigen cDNA. The central part of the Ki-67 antigen cDNA contains a large 6,845-bp exon with 16 tandemly repeated 366-bp elements, the "Ki-67 repeats", each including a highly conserved new motif of 66 bp, the "Ki-67 motif", which encodes for the epitope detected by Ki-67. Computer analysis of the nucleic acid and the deduced amino acid sequence of the Ki-67 antigen confirmed that the cDNA encodes for a nuclear and short-lived protein without any significant homology to known sequences. Ki-67 antigen-specific antisense oligonucleotides inhibit the proliferation of IM-9 cell line cells, indicating that the Ki-67 antigen may be an absolute requirement for maintaining cell proliferation. We conclude that the Ki-67 antigen defines a new category of cell cycle-associated nuclear nonhistone proteins.