scispace - formally typeset
Search or ask a question

Showing papers on "Antigen published in 2000"


Journal ArticleDOI
TL;DR: It is demonstrated that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcγRIIB.
Abstract: Inhibitory receptors have been proposed to modulate the in vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcgammaRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicity in vivo, modulating the activity of FcgammaRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcgamma receptors on effector cells is a dominant component of the in vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin(R)) and rituximab (Rituxan(R)), engaged both activation (FcgammaRIII) and inhibitory (FcgammaRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcgammaRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growth in vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcgammaRIIB.

2,831 citations


Journal ArticleDOI
TL;DR: It is reported that the Treg cells that control intestinal inflammation express the same phenotype (CD25+CD45RBlowCD4+) as those that control autoimmunity, suggesting that Treg cell function contributes to the immune suppression characteristic of CTLA-4 signaling.
Abstract: It is now clear that functionally specialized regulatory T (Treg) cells exist as part of the normal immune repertoire, preventing the development of pathogenic responses to both self- and intestinal antigens. Here, we report that the Treg cells that control intestinal inflammation express the same phenotype (CD25+CD45RBlowCD4+) as those that control autoimmunity. Previous studies have failed to identify how CD25+ Treg cells function in vivo. Our studies reveal that the immune-suppressive function of these cells in vivo is dependent on signaling via the negative regulator of T cell activation cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), as well as secretion of the immune-suppressive cytokine transforming growth factor β. Strikingly, constitutive expression of CTLA-4 among CD4+ cells was restricted primarily to Treg cells, suggesting that CTLA-4 expression by these cells is involved in their immune-suppressive function. These findings raise the possibility that Treg cell function contributes to the immune suppression characteristic of CTLA-4 signaling. Identification of costimulatory molecules involved in the function of Treg cells may facilitate further characterization of these cells and development of new therapeutic strategies for the treatment of inflammatory diseases.

2,238 citations


Journal ArticleDOI
01 Dec 2000-Science
TL;DR: It is shown that, in a strain of mice incapable of developing cells of the myeloid and lymphoid lineages, transplanted adult bone marrow cells migrated into the brain and differentiated into cells that expressed neuron-specific antigens.
Abstract: Bone marrow stem cells give rise to a variety of hematopoietic lineages and repopulate the blood throughout adult life. We show that, in a strain of mice incapable of developing cells of the myeloid and lymphoid lineages, transplanted adult bone marrow cells migrated into the brain and differentiated into cells that expressed neuron-specific antigens. These findings raise the possibility that bone marrow-derived cells may provide an alternative source of neurons in patients with neurodegenerative diseases or central nervous system injury.

1,887 citations


Journal ArticleDOI
16 Jun 2000-Science
TL;DR: It is shown that CD47 (integrin-associated protein) functions as a marker of self on murine red blood cells and may represent a potential pathway for the control of hemolytic anemia.
Abstract: The immune system recognizes invaders as foreign because they express determinants that are absent on host cells or because they lack "markers of self" that are normally present. Here we show that CD47 (integrin-associated protein) functions as a marker of self on murine red blood cells. Red blood cells that lacked CD47 were rapidly cleared from the bloodstream by splenic red pulp macrophages. CD47 on normal red blood cells prevented this elimination by binding to the inhibitory receptor signal regulatory protein alpha (SIRPalpha). Thus, macrophages may use a number of nonspecific activating receptors and rely on the presence or absence of CD47 to distinguish self from foreign. CD47-SIRPalpha may represent a potential pathway for the control of hemolytic anemia.

1,556 citations


Journal ArticleDOI
TL;DR: This review will concentrate on the migration of T cells, which are at the heart of most adaptive immune responses, since T cells respond to pathogens only on direct contact with pathogen-derived antigen.
Abstract: Since the pioneering work of Gowans and colleagues in the 1960s,1,2 much progress has been made in understanding the pivotal role of cell migration in immunity. We now have considerable knowledge of the way in which specialized leukocytes are channeled to distinct target tissues in immune responses and inflammation (Figure 1). This review will concentrate on the migration of T cells, which are at the heart of most adaptive immune responses. Since T cells respond to pathogens only on direct contact with pathogen-derived antigen, they must migrate to sites where antigen is found. The T-cell receptor recognizes a peptide . . .

1,450 citations


Journal ArticleDOI
TL;DR: This article reviews recent developments in this field of research, with main emphasis on structure and expression of CD40 and its ligand; (2) CD40 signal transduction; (3) in vitro function ofCD40 on different cell types; and (4) in vivo functions of CD 40/CD40‐L interactions.
Abstract: CD40 is a cell surface receptor that belongs to the tumor necrosis factor-R (TNF-R) family, and that was first identified and functionally characterized on B lymphocytes. Its critical role in T cell-dependent humoral immune responses was demonstrated by patients with the hyper-IgM syndrome, as well as by gene targeting in mice. However, in recent years it has become clear that CD40 is expressed much more broadly, including expression on monocytes, dendritic cells, endothelial cells, and epithelial cells. In addition, the CD40-ligand (CD40-L/CD154), a member of the TNF family, is also expressed more widely than activated CD4+ T cells only. Therefore it is now thought that CD40-CD40-L interactions play a more general role in immune regulation. Collectively these studies have culminated in pre-clinical and clinical studies that are in progress. This article reviews recent developments in this field of research, with main emphasis on (1) structure and expression of CD40 and its ligand; (2) CD40 signal transduction; (3) in vitro function of CD40 on different cell types; and (4) in vivo functions of CD40/CD40-L interactions.

1,406 citations


Journal ArticleDOI
TL;DR: Detailed characterization of the CD4+CD25+ population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism, demonstrating that their suppressor effector function is completely nonspecific.
Abstract: CD4 + CD25 + T cells represent a unique population of “professional” suppressor T cells that prevent induction of organ-specific autoimmune disease. In vitro, CD4 + CD25 + cells were anergic to simulation via the TCR and when cultured with CD4 + CD25 − cells, markedly suppressed polyclonal T cell proliferation by specifically inhibiting the production of IL-2. Suppression was cytokine independent, cell contact dependent, and required activation of the suppressors via their TCR. Further characterization of the CD4 + CD25 + population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism. CD4 + CD25 + T cells isolated from TCR transgenic (Tg) mice inhibited responses of CD4 + CD25 − Tg T cells to the same Ag, but also inhibited the Ag-specific responses of Tg cells specific for a distinct Ag. Suppression required that both peptide/MHC complexes be present in the same culture, but the Ags could be presented by two distinct populations of APC. When CD4 + CD25 + T cells were cultured with anti-CD3 and IL-2, they expanded, remained anergic, and in the absence of restimulation via their TCR, suppressed Ag-specific responses of CD4 + CD25 − T cells from multiple TCR transgenics. Collectively, these data demonstrate that CD4 + CD25 + T cells require activation via their TCR to become suppressive, but once activated, their suppressor effector function is completely nonspecific. The cell surface molecules involved in this T-T interaction remain to be characterized.

1,335 citations


Journal ArticleDOI
TL;DR: Results indicate that CD8+ DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens, suggesting an endosome to cytosol transport.
Abstract: Bone marrow–derived antigen-presenting cells (APCs) take up cell-associated antigens and present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells in a process referred to as cross-priming. Cross-priming is essential for the induction of CD8+ T cell responses directed towards antigens not expressed in professional APCs. Although in vitro experiments have shown that dendritic cells (DCs) and macrophages are capable of presenting exogenous antigens in association with MHC class I, the cross-presenting cell in vivo has not been identified. We have isolated splenic DCs after in vivo priming with ovalbumin-loaded β2-microglobulin–deficient splenocytes and show that they indeed present cell-associated antigens in the context of MHC class I molecules. This process is transporter associated with antigen presentation (TAP) dependent, suggesting an endosome to cytosol transport. To determine whether a specific subset of splenic DCs is involved in this cross-presentation, we negatively and positively selected for CD8− and CD8+ DCs. Only the CD8+, and not the CD8−, DC subset demonstrates cross-priming ability. FACS® studies after injection of splenocytes loaded with fluorescent beads showed that 1 and 0.6% of the CD8+ and the CD8− DC subsets, respectively, had one or more associated beads. These results indicate that CD8+ DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens.

1,306 citations


Journal ArticleDOI
TL;DR: Assessment of the contribution of the pro-inflammatory cytokine interleukin (IL)-6 to the increased resistance of mucosal T cells against apoptosis in Crohn disease indicates that a pathway of T-cell activation driven by IL-6–sIL-6R contributes to the perpetuation of chronic intestinal inflammation.
Abstract: The pro-inflammatory cytokine interleukin (IL)-6 (refs. 1-5) can bind to cells lacking the IL-6 receptor (IL-6R) when it forms a complex with the soluble IL-6R (sIL-6R) (trans signaling). Here, we have assessed the contribution of this system to the increased resistance of mucosal T cells against apoptosis in Crohn disease (CD), a chronic inflammatory disease of the gastrointestinal tract. A neutralizing antibody against IL-6R suppressed established experimental colitis in various animal models of CD mediated by type 1 T-helper cells, by inducing apoptosis of lamina propria T cells. Similarly, specific neutralization of sIL-6R in vivo by a newly designed gp130-Fc fusion protein caused suppression of colitis activity and induction of apoptosis, indicating that sIL-6R prevents mucosal T-cell apoptosis. In patients with CD, mucosal T cells showed strong evidence for IL-6 trans signaling, with activation of signal transducer and activator of transcription 3, bcl-2 and bcl-xl. Blockade of IL-6 trans signaling caused T-cell apoptosis, indicating that the IL-6-sIL-6R system mediates the resistance of T cells to apoptosis in CD. These data indicate that a pathway of T-cell activation driven by IL-6-sIL-6R contributes to the perpetuation of chronic intestinal inflammation. Specific targeting of this pathway may be a promising new approach for the treatment of CD.

1,248 citations


Book ChapterDOI
TL;DR: This important finding suggests that TAA-specific CTL may be present in some cancer patients but are unable to attack tumor cells due to the presence of inhibitory receptors.
Abstract: Publisher Summary It is known for some time that malignant transformation of human cells may be associated with the appearance of tumor associated antigens (TAA). Decades of research have been aimed at the identification of TAA that can serve as targets for the immunotherapy of malignant diseases. The dramatic progress in the understanding of molecular basis of target cell recognition by cytotoxic T lymphocytes (CTL) has provided the background to design effective strategies to identify TAA recognized by CTL on tumor cells. The extensive application of these strategies by a number of investigators has resulted in the identification of various families of TAA on various types of solid tumors. Mouse tumor models have played an important role in elucidating the mechanisms by which the immune system interacts with tumor cells and eradicates cancer. The second line of evidence is represented by the phenomenon of a “mixed response.” A mixed response occurs rather frequently in patients with metastases, although its actual frequency is not documented. Mixed responses are characterized by the different behavior of synchronous metastases in response to T cell-based immunotherapy. This important finding suggests that TAA-specific CTL may be present in some cancer patients but are unable to attack tumor cells due to the presence of inhibitory receptors.

1,192 citations


Journal ArticleDOI
28 Apr 2000-Science
TL;DR: It is shown that CD8+ T cells of memory phenotype divide slowly in animals and is markedly increased by inhibition of interleukin-2 (IL-2), which means that the numbers ofCD8+ memory T cells in animals are controlled by a balance between IL-15 and IL-2.
Abstract: Memory T cells maintain their numbers for long periods after antigen exposure. Here we show that CD8+ T cells of memory phenotype divide slowly in animals. This division requires interleukin-15 and is markedly increased by inhibition of interleukin-2 (IL-2). Therefore, the numbers of CD8+ memory T cells in animals are controlled by a balance between IL-15 and IL-2.

Journal ArticleDOI
06 Oct 2000-Science
TL;DR: How the dynamics of DC-T cell encounter and the mechanism of T cell differentiation make the decoding of this information stochastic rather than determinate results in the generation of both terminally differentiated effector cells and intermediates that play distinctive roles in protection, immunoregulation, and immunological memory is discussed.
Abstract: The immune response is initiated in organized lymphoid tissues where antigen-loaded dendritic cells (DCs) encounter antigen-specific T cells. DCs function as packets of information that must be decoded by the T cell before an appropriate immune response can be mounted. We discuss how the dynamics of DC-T cell encounter and the mechanism of T cell differentiation make the decoding of this information stochastic rather than determinate. This results in the generation of both terminally differentiated effector cells and intermediates that play distinctive roles in protection, immunoregulation, and immunological memory.

Journal ArticleDOI
01 Jul 2000-Immunity
TL;DR: It is reported that diversity at one of these regions, CDR3 of the V(H) domain, is sufficient to permit otherwise identical IgM molecules to distinguish between a variety of hapten and protein antigens, and that somatic mutation can allow such antibodies to achieve surprisingly high affinities.

Journal ArticleDOI
15 Dec 2000-Science
TL;DR: An important role for class I MHC molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS) is demonstrated.
Abstract: Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3ζ, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants,N-methyl-d-aspartate receptor–dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).

Journal ArticleDOI
TL;DR: Results show that in the presence of an effective HBV-specific CD8 response, inhibition of virus replication can be independent of liver damage and may contribute to liver pathology not only directly but by causing the recruitment of nonvirus-specific T cells.
Abstract: Hepatitis B virus (HBV) is a noncytopathic virus, and the recognition of infected hepatocytes by HBV-specific CD8 cells has been assumed to be the central mechanism causing both liver damage and virus control. To understand the role of cytotoxic T cells in the pathogenesis of HBV infection, we used functional assays that require T cell expansion in vitro and human histocompatibility leukocyte antigen (HLA)-peptide tetramers that allow direct ex vivo quantification of circulating and liver-infiltrating HBV-specific CD8 cells. Two groups of patients with persistent HBV infection were studied: one without liver inflammation and HBV replication, the other with liver inflammation and a high level of HBV replication. Contrary to expectation, a high frequency of intrahepatic HBV-specific CD8 cells was found in the absence of hepatic immunopathology. In contrast, virus-specific T cells were more diluted among liver infiltrates in viremic patients, but their absolute number was similar because of the massive cellular infiltration. Furthermore, inhibition of HBV replication was associated with the presence of a circulating reservoir of CD8(+) cells able to expand after specific virus recognition that was not detectable in highly viremic patients with liver inflammation. These results show that in the presence of an effective HBV-specific CD8 response, inhibition of virus replication can be independent of liver damage. When the HBV-specific CD8 response is unable to control virus replication, it may contribute to liver pathology not only directly but by causing the recruitment of nonvirus-specific T cells.

Journal ArticleDOI
TL;DR: The results indicate that antibody arrays can be used to identify differentially expressed proteins.
Abstract: We have developed a novel technique for high-throughput screening of recombinant antibodies, based on the creation of antibody arrays. Our method uses robotic picking and high-density gridding of bacteria containing antibody genes followed by filter-based enzyme-linked immunosorbent assay (ELISA) screening to identify clones that express binding antibody fragments. By eliminating the need for liquid handling, we can thereby screen up to 18,342 different antibody clones at a time and, because the clones are arrayed from master stocks, the same antibodies can be double spotted and screened simultaneously against 15 different antigens. We have used our technique in several different applications, including isolating antibodies against impure proteins and complex antigens, where several rounds of phage display often fail. Our results indicate that antibody arrays can be used to identify differentially expressed proteins.

Journal ArticleDOI
01 Aug 2000-Immunity
TL;DR: The results suggest that deficiency of RIIB on B cells leads to autoimmune disease in specific genetic backgrounds, thus identifying it as a susceptibility factor under the influence of epistatic modifiers for the development of autoimmunity.

Journal ArticleDOI
TL;DR: Promising results from clinical trials in patients with malignant lymphoma, melanoma, and prostate cancer suggest that immunotherapeutic strategies that take advantage of the antigen presenting properties of dendritic cells may ultimately prove both efficacious and widely applicable to human tumors.
Abstract: The potential to harness the potency and specificity of the immune system underlies the growing interest in cancer immunotherapy. One such approach uses bone marrow-derived dendritic cells, phenotypically distinct and extremely potent antigen-presenting cells, to present tumor-associated antigens and thereby generate tumor-specific immunity. Support for this strategy comes from animal studies that have demonstrated that dendritic cells, when loaded ex vivo with tumor antigens and administered to tumor-bearing hosts, can elicit T cell-mediated tumor destruction. These observations have led to clinical trials designed to investigate the immunologic and clinical effects of antigen-loaded dendritic cells administered as a therapeutic vaccine to patients with cancer. In the design and conduct of such trials, important considerations include antigen selection, methods for introducing the antigen into MHC class I and II processing pathways, methods for isolating and activating dendritic cells, and route of administration. Although current dendritic cell-based vaccination methods are cumbersome, promising results from clinical trials in patients with malignant lymphoma, melanoma, and prostate cancer suggest that immunotherapeutic strategies that take advantage of the antigen presenting properties of dendritic cells may ultimately prove both efficacious and widely applicable to human tumors.

Journal ArticleDOI
TL;DR: The data indicate that hybrid cell vaccination is a safe and effective therapy for renal cell carcinoma and may provide a broadly applicable strategy for other malignancies with unknown antigens.
Abstract: Reports of spontaneous regressions of metastases and the demonstration of tumor-reactive cytotoxic T lymphocytes indicate the importance of the host's immune system in controlling the devastating course of metastatic renal cell carcinoma1,2,3. Recent research indicates that immunization with hybrids of tumor and antigen presenting cells results in protective immunity and rejection of established tumors in various rodent models4,5,6,7,8. Here, we present a hybrid cell vaccination study of 17 patients. Using electrofusion techniques5, we generated hybrids of autologous tumor and allogeneic dendritic cells that presented antigens expressed by the tumor in concert with the co-stimulating capabilities of dendritic cells. After vaccination, and with a mean follow-up time of 13 months, four patients completely rejected all metastatic tumor lesions, one presented a ‘mixed response’, and two had a tumor mass reduction of greater 50%. We also demonstrate induction of HLA-A2-restricted cytotoxic T cells reactive with the Muc1 tumor-associated antigen and recruitment of CD8+ lymphocytes into tumor challenge sites. Our data indicate that hybrid cell vaccination is a safe and effective therapy for renal cell carcinoma and may provide a broadly applicable strategy for other malignancies with unknown antigens.

Journal ArticleDOI
TL;DR: It is reported that liver sinusoidal endothelial cells (LSEC) are organ-resident, non-myeloid APC capable of cross-presenting soluble exogenous antigen to CD8+ T cells, and it is likely that cross- presentation by LSEC contributes to CD 8+ T cell tolerance observed in situations where soluble antigen is present in the circulation.
Abstract: Myeloid antigen-presenting cells (APC) are known to cross-present exogenous antigen on major histocompatibility class I molecules to CD8+ T cells and thereby induce protective immunity against infecting microorganisms. Here we report that liver sinusoidal endothelial cells (LSEC) are organ-resident, non-myeloid APC capable of cross-presenting soluble exogenous antigen to CD8+ T cells. Though LSEC employ similar molecular mechanisms for cross-presentation as dendritic cells, the outcome of cross-presentation by LSEC is CD8+ T cell tolerance rather than immunity. As uptake of circulating antigens into LSEC occurs efficiently in vivo, it is likely that cross-presentation by LSEC contributes to CD8+ T cell tolerance observed in situations where soluble antigen is present in the circulation.

Journal ArticleDOI
TL;DR: Modifications of anchor residues that lead to an improved affinity for major histocompatibility complex (MHC), and altered conformation of the peptide–MHC complex may be a critical factor leading to T cell responses to gliadin and the oral intolerance of gluten found in CD.
Abstract: The great majority of patients that are intolerant of wheat gluten protein due to celiac disease (CD) are human histocompatibility leukocyte antigen (HLA)-DQ2(+), and the remaining few normally express HLA-DQ8. These two class II molecules are chiefly responsible for the presentation of gluten peptides to the gluten-specific T cells that are found only in the gut of CD patients but not of controls. Interestingly, tissue transglutaminase (tTG)-mediated deamidation of gliadin plays an important role in recognition of this food antigen by intestinal T cells. Here we have used recombinant antigens to demonstrate that the intestinal T cell response to alpha-gliadin in adult CD is focused on two immunodominant, DQ2-restricted peptides that overlap by a seven-residue fragment of gliadin. We show that tTG converts a glutamine residue within this fragment into glutamic acid and that this process is critical for T cell recognition. Gluten-specific T cell lines from 16 different adult patients all responded to one or both of these deamidated peptides, indicating that these epitopes are highly relevant to disease pathology. Binding studies showed that the deamidated peptides displayed an increased affinity for DQ2, a molecule known to preferentially bind peptides containing negatively charged residues. Interestingly, the modified glutamine is accommodated in different pockets of DQ2 for the different epitopes. These results suggest modifications of anchor residues that lead to an improved affinity for major histocompatibility complex (MHC), and altered conformation of the peptide-MHC complex may be a critical factor leading to T cell responses to gliadin and the oral intolerance of gluten found in CD.

Journal ArticleDOI
TL;DR: Provenge is a novel immunotherapy agent that is safe and breaks tolerance to the tissue antigen PAP and preliminary evidence for clinical efficacy warrants further exploration.
Abstract: PURPOSE: Provenge (Dendreon Corp, Seattle, WA) is an immunotherapy product consisting of autologous dendritic cells loaded ex vivo with a recombinant fusion protein consisting of prostatic acid phosphatase (PAP) linked to granulocyte-macrophage colony-stimulating factor. Sequential phase I and phase II trials were performed to determine the safety and efficacy of Provenge and to assess its capacity to break immune tolerance to the normal tissue antigen PAP. PATIENTS AND METHODS: All patients had hormone-refractory prostate cancer. Dendritic-cell precursors were harvested by leukapheresis in weeks 0, 4, 8, and 24, loaded ex vivo with antigen for 2 days, and then infused intravenously over 30 minutes. Phase I patients received increasing doses of Provenge, and phase II patients received all the Provenge that could be prepared from a leukapheresis product. RESULTS: Patients tolerated treatment well. Fever, the most common adverse event, occurred after 15 infusions (14.7%). All patients developed immune respo...

Journal ArticleDOI
15 Jul 2000-Blood
TL;DR: Results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.

Journal ArticleDOI
TL;DR: This review will summarize what is currently known about the signals that regulate lineage commitment in T helper cells with a special focus on three subset-specific transcription factors, T-bet, GATA-3, and c-Maf, responsible for lineage commitment.
Abstract: Cells of the immune system provide particularly fruitful subjects for the study of lineage commitment. Both T and B lymphocytes undergo complicated patterns of differentiation from uncommitted, nonfunctional precursor cells to highly sophisticated effector cells. The development of the helper T lymphocyte is one of the most elegant examples of this. A little over a decade ago, Mosmann and Coffman (1989) discovered that naive mouse CD4 T helper lymphocytes, upon receiving an antigenic stimulus, differentiate into two distinct subsets defined both by their function and by unique cytokine profiles. These subsets, T helper 1 (Th1) and T helper 2 (Th2) (Mosmann et al. 1986; Mosmann and Coffman 1989; Paul and Seder 1994; O’Garra 1998; Rengarajan and Glimcher 2000), are responsible for cell-mediated/inflammatory immunity and humoral responses, respectively (Fig. 1). This division of labor fits nicely with previous demonstrations that an organism tends to mount either a cell-mediated or humoral response, but not both, in response to pathogens. The function of T helper cells can largely be explained by the cytokines they secrete. Cytokines (or lymphokines) are small hormone-like polypeptides that have pleiotrophic biological activities in several cell types. Resting T cells do not transcribe cytokine genes, but they are rapidly induced upon coactivation through the T-cell receptor (TCR) and costimulatory receptors (Lenschow et al. 1996). Much progress has been made in identifying the signaling pathways and transcription factors that control Th1 and Th2 differentiation as shown schematically (Fig. 2a). This review will summarize what is currently known about the signals that regulate lineage commitment in T helper cells with a special focus on three subset-specific transcription factors, T-bet, GATA-3, and c-Maf, responsible for lineage commitment (Fig. 2b).

Journal ArticleDOI
15 Jun 2000-Blood
TL;DR: It is concluded that CDC and ADCC are major mechanisms of action of rituximab on B-cell lymphomas and that a heterogeneous susceptibility of different lymphoma cells to complement may be at least in part responsible for the heterogeneity of the response of different patients to ritUXimab in vivo.

Journal ArticleDOI
TL;DR: Allergens have no characteristic structural features other than that they need to be able to reach (and stimulate) immune cells and mast cells, and within this constraint, any antigen may be allergenic, particularly if it avoids activation of T(H)2-suppressive mechanisms.
Abstract: One of the major challenges of molecular allergy is to predict the allergenic potential of a protein, particularly in novel foods. Two aspects have to be distinguished: immunogenicity and cross-reactivity. Immunogenicity reflects the potential of a protein to induce IgE antibodies, whereas cross-reactivity is the reactivity of (usually preexisting) IgE antibodies with the target protein. In addition to these two issues, the relation between IgE-binding potential and clinical symptoms is of interest. This is influenced by physical properties (eg, stability and size) and immunologic properties (affinity and epitope valence). Discussions on immunogenicity and cross-reactivity of allergens rely on the establishment of structural similarities and differences among allergens and between allergens and nonallergens. For comparisons between the 3-dimensional protein folds, the representation as 2-dimensional proximity plots provides a convenient visual aid. Analysis of approximately 40 allergenic proteins (or parts of these proteins), of which the protein folds are either known or can be predicted on the basis of homology, indicates that most of these can be classified into 4 structural families: (1) antiparallel beta-strands: the immunoglobulin-fold family (grass group 2, mite group 2), serine proteases (mite group 3, 6, and 9), and soybean-type trypsin inhibitor (Ole e 1, grass group 11); (2) antiparallel beta-sheets intimately associated with one or more alpha-helices: tree group 1, lipocalin, profilin, aspartate protease (cockroach group 2); (3) (alpha+beta) structures, in which the alpha- and beta-structural elements are not intimately associated: mite group 1, lysozyme/lactalbumin, vespid group 5; and (4) alpha-helical: nonspecific lipid transfer protein, seed 2S protein, insect hemoglobin, fish parvalbumin, pollen calmodulin, mellitin from bee venom, Fel d 1 chain 1, serum albumin. Allergens with parallel beta-strands (in combination with an alpha-helix linking the two strands, a motif commonly found in, for example, nucleotide-binding proteins) seem to be underrepresented. The conclusion is that allergens have no characteristic structural features other than that they need to be able to reach (and stimulate) immune cells and mast cells. Within this constraint, any antigen may be allergenic, particularly if it avoids activation of T(H)2-suppressive mechanisms (CD8 cells and T(H)1 cells).

Journal ArticleDOI
01 Nov 2000-Blood
TL;DR: Evidence is provided that patients with advanced breast and ovarian cancer can be efficiently vaccinated with autologous DCs pulsed with HER-2/neu– or MUC1-derived peptides, suggesting that antigen spreading in vivo might occur after successful immunization with a single tumor antigen.

Journal ArticleDOI
TL;DR: It is demonstrated that CagA, a virulence factor commonly expressed in peptic ulcer disease and thought to be an orphan of a specific biological function, is delivered into the epithelial cells by the cag type IV secretion system where it is phosphorylated on tyrosine residues by an as yet unidentified host cell kinase and wired to eukaryotic signal transduction pathways and cytoskeletal plasticity.
Abstract: Helicobacter pylori strains associated with severe tissue damage and inflammation possess a unique genetic locus, cag, containing 31 genes originating from a distant event of horizontal transfer and retained as a pathogenicity island. The cag system is an Helicobacter-specific type IV secretion engine involved in cellular responses like induction of pedestals, secretion of IL-8, and phosphorylation of proteic targets. It has previously been reported that cocultivation of epithelial cells with Helicobacter pylori triggers signal transduction and tyrosine phosphorylation of a 145-kDa putative host cell protein. Herein, we demonstrate that this protein is not derived from the host but rather is the bacterial immunodominant antigen CagA, a virulence factor commonly expressed in peptic ulcer disease and thought to be an orphan of a specific biological function. Thus, CagA is delivered into the epithelial cells by the cag type IV secretion system where it is phosphorylated on tyrosine residues by an as yet unidentified host cell kinase and wired to eukaryotic signal transduction pathways and cytoskeletal plasticity.

Journal ArticleDOI
TL;DR: It is concluded that α-GalCer inhibits HBV replication by directly activating NKT cells and by secondarily activating NK cells to secrete antiviral cytokines in the liver, and that therapeutic activation of N KT cells may represent a new strategy for the treatment of chronic HBV infection.
Abstract: We have previously reported that hepatitis B virus (HBV)–specific CD8+ cytotoxic T lymphocytes and CD4+ helper T lymphocytes can inhibit HBV replication in the liver of HBV transgenic mice by secreting interferon (IFN)-γ when they recognize viral antigen. To determine whether an activated innate immune system can also inhibit HBV replication, in this study we activated natural killer T (NKT) cells in the liver of HBV transgenic mice by a single injection of α-galactosylceramide (α-GalCer), a glycolipid antigen presented to Vα14+NK1.1+ T cells by the nonclassical major histocompatibility complex class I–like molecule CD1d. Within 24 h of α-GalCer injection, IFN-γ and IFN-α/β were detected in the liver of HBV transgenic mice and HBV replication was abolished. Both of these events were temporally associated with the rapid disappearance of NKT cells from the liver, presumably reflecting activation-induced cell death, and by the recruitment of activated NK cells into the organ. In addition, prior antibody-mediated depletion of CD4+ and CD8+ T cells from the mice did not diminish the ability of α-GalCer to trigger the disappearance of HBV from the liver, indicating that conventional T cells were not downstream mediators of this effect. Finally, the antiviral effect of α-GalCer was inhibited in mice that are genetically deficient for either IFN-γ or the IFN-α/β receptor, indicating that most of the antiviral activity of α-GalCer is mediated by these cytokines. Based on these results, we conclude that α-GalCer inhibits HBV replication by directly activating NKT cells and by secondarily activating NK cells to secrete antiviral cytokines in the liver. In view of these findings, we suggest that, if activated, the innate immune response, like the adaptive immune response, has the potential to control viral replication during natural HBV infection. In addition, the data suggest that therapeutic activation of NKT cells may represent a new strategy for the treatment of chronic HBV infection.

Journal ArticleDOI
TL;DR: Experimental data are summarized that shed light on the molecular mechanisms and the cell populations of the liver involved in local immune regulation in the liver that contribute to tolerance induction by deletion of T cells through induction of apoptosis.
Abstract: The physiological function of the liver--such as removal of pathogens and antigens from the blood, protein synthesis and metabolism--requires an immune response that is adapted to these tasks and is locally regulated. Pathogenic microorganisms must be efficiently eliminated while the large number of antigens derived from the gastrointestinal tract must be tolerized. From experimental observations it is evident that the liver favours the induction of tolerance rather than the induction of immunity. The liver probably not only is involved in transplantation tolerance but contributes as well to tolerance to orally ingested antigens (entering the liver with portal-venous blood) and to containment of systemic immune responses (antigen from the systemic circulation entering the liver with arterial blood). This review summarizes the experimental data that shed light on the molecular mechanisms and the cell populations of the liver involved in local immune regulation in the liver. Although hepatocytes constitute the major cell population of the liver, direct interaction of hepatocytes with leukocytes in the blood is unlikely. Sinusoidal endothelial cells, which line the hepatic sinusoids and separate hepatocytes from leukocytes in the sinusoidal lumen, and Kupffer cells, the resident macrophage population of the liver, can directly interact with passenger leukocytes. In the liver, clearance of antigen from the blood occurs mainly by sinusoidal endothelial cells through very efficient receptor-mediated endocytosis. Liver sinusoidal endothelial cells constitutively express all molecules necessary for antigen presentation (CD54, CD80, CD86, MHC class I and class II and CD40) and can function as antigen-presenting cells for CD4+ and CD8+ T cells. Thus, these cells probably contribute to hepatic immune surveillance by activation of effector T cells. Antigen-specific T-cell activation is influenced by the local microenvironment. This microenvironment is characterized by the physiological presence of bacterial constituents such as endotoxin and by the local release of immunosuppressive mediators such as interleukin-10, prostaglandin E2 and transforming growth factor-beta. Different hepatic cell populations may contribute in different ways to tolerance induction in the liver. In vitro experiments revealed that naive T cells are activated by resident sinusoidal endothelial cells but do not differentiate into effector T cells. These T cells show a cytokine profile and a functional phenotype that is compatible with the induction of tolerance. Besides sinusoidal endothelial cells, other cell populations of the liver, such as dendritic cells, Kupffer cells and perhaps also hepatocytes, may contribute to tolerance induction by deletion of T cells through induction of apoptosis.