scispace - formally typeset
Search or ask a question
Topic

Antigen

About: Antigen is a research topic. Over the lifetime, 170233 publications have been published within this topic receiving 6982342 citations. The topic is also known as: antibody generator & Antigen.


Papers
More filters
Journal ArticleDOI
03 Nov 1988-Nature
TL;DR: In the periphery of transgenic mice expressing Ld, functional T cells bearing the 2C T-cell receptor were deleted and this elimination of autoreactive T cells appears to take place at or before the CD4+CD8+ stage in thymocyte development.
Abstract: The T-cell repertoire found in the periphery is thought to be shaped by two developmental events in the thymus that involve the antigen receptors of T lymphocytes. First, interactions between T cells and major histocompatibility complex (MHC) molecules select a T-cell repertoire skewed towards recognition of antigens in the context of self-MHC molecules. In addition, T cells that react strongly to self-MHC molecules are eliminated by a process called self-tolerance. We have recently described transgenic mice expressing the alpha beta T-cell receptor from the cytotoxic T lymphocyte 2C (ref. 11). The clone 2C was derived from a BALB.B (H-2b) anti-BALB/c (H-2d) mixed lymphocyte culture and is specific for the Ld class I MHC antigen. In transgenic H-2b mice, a large fraction of T cells in the periphery expressed the 2C T-cell receptor. These T cells were predominantly CD4-CD8+ and were able to specifically lyse target cells bearing Ld. We now report that in the periphery of transgenic mice expressing Ld, functional T cells bearing the 2C T-cell receptor were deleted. This elimination of autoreactive T cells appears to take place at or before the CD4+CD8+ stage in thymocyte development. In addition, we report that in H-2s mice, a non-autoreactive target haplotype, large numbers of CD8+ T cells bearing the 2C T-cell receptor were not found, providing strong evidence for the positive selection of the 2C T-cell receptor specificity by H-2b molecules.

738 citations

Journal ArticleDOI
13 Dec 1984-Nature
TL;DR: It is demonstrated here that p53 can cooperate with the activated Ha-ras oncogene to transform normal embryonic cells, and the resultant foci contain cells of a markedly altered morphology which produce high levels of p53.
Abstract: The cellular tumour antigen p53 is found at elevated levels in a wide variety of transformed cells (for reviews see refs 1, 2). Very little is yet known about the precise relationship of p53 to malignant transformation. Although the increase in p53 levels could be a secondary by-product of the transformed state, it is equally possible that p53 is actively involved in altering cellular growth properties, especially as it has been implicated in the regulation of normal cell proliferation. We sought to test whether p53 could behave in a manner similar to known genes in a biological test system, and we demonstrate here that p53 can cooperate with the activated Ha-ras oncogene to transform normal embryonic cells. The resultant foci contain cells of a markedly altered morphology which produce high levels of p53. Cell lines established from such foci elicit tumours in syngeneic animals.

738 citations

Journal ArticleDOI
01 Jan 1992-Bone
TL;DR: Three hybridoma cell lines, SH2, SH3, and SH4, were identified; these hybridomas secrete antibodies that recognize antigens on the cell surface of marrow- derived mesenchymal cells, but fail to react with marrow-derived hemopoietic cells, suggesting that the antigen recognized by these antibodies are developmentally regulated and specific for primitive or early-stage cells of the osteogenic lineage.

737 citations

Journal ArticleDOI
TL;DR: It is suggested that IL-12 has an important role in initiating a Th1 response and protective immunity in resistant mice, as seen in the case of highly susceptible BALB/c mice.
Abstract: Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a > 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.

737 citations

Book ChapterDOI
TL;DR: This chapter discusses the immune response region, the genes of which appear to control a variety of immune phenomena—including antibody response to many antigens, susceptibility to tumor viruses, and graft-versus-host (GVH), and mixed lymphocyte culture (MLC) reactions.
Abstract: Publisher Summary One of the most rapidly developing areas of immunologic research deals with the H-2 gene complex, a tightly linked series of genes controlling a variety of immunologic traits, including histocompatibility and immune responsiveness. This chapter summarizes the varieties of phenotypic traits associated with differences in the H-2 complex. The mapping of the H-2 complex into four major regions marked by H-2K, Ir-1, Ss-Slp, and H-2D genes plus the associated Tla gene is discussed in the chapter, along with the phenotypic traits associated with these regions. The chapter discusses the immune response region, the genes of which appear to control a variety of immune phenomena—including antibody response to many antigens, susceptibility to tumor viruses, and graft-versus-host (GVH), and mixed lymphocyte culture (MLC) reactions. The H-2 complex consists of many genes with diverse functions, most of which control cell membrane structures and/or processes. The fact that lymphocytes are particularly affected by H-2 genes has important implications for immunology. However, some of the genes also affect other cell types, implying a still larger role for the H-2 complex, perhaps in development or in cell regulation. Because the H-2 complex is the most thoroughly characterized segment of a mammalian chromosome, it is also an important model for the studies of gene action, organization, and evolution in mammals.

737 citations


Network Information
Related Topics (5)
Antibody
113.9K papers, 4.1M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
94% related
Cytokine
79.2K papers, 4.4M citations
92% related
Cytotoxic T cell
92.4K papers, 4.7M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
20233,983
20225,279
20213,228
20203,444
20193,267